File size: 19,745 Bytes
63fe63a
 
 
 
 
 
6d7ba01
 
63fe63a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7ba01
63fe63a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7ba01
63fe63a
 
 
 
 
 
 
 
 
 
 
6d7ba01
63fe63a
 
6d7ba01
63fe63a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7ba01
63fe63a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
---
license: other
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
pipeline_tag: image-text-to-text
library_name: transformers
base_model: OpenGVLab/InternVL2_5-78B
base_model_relation: quantized
language:
  - multilingual
tags:
  - internvl
  - custom_code
---

# InternVL2_5-78B-AWQ

[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL)  [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238)  [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821)  [\[📜 Mini-InternVL\]](https://arxiv.org/abs/2410.16261)  [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271)

[\[🆕 Blog\]](https://internvl.github.io/blog/)  [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/)  [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[🚀 Quick Start\]](#quick-start)  [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)

<div align="center">
  <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
</div>

## Introduction

We are excited to introduce **InternVL 2.5**, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5HDAGOQOZvS1EtI107Ac-.png)

## InternVL 2.5 Family

In the following table, we provide an overview of the InternVL 2.5 series.

|   Model Name    |                                       Vision Part                                       |                                 Language Part                                  |                           HF Link                           |
| :-------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------: |
| InternVL2_5-1B  | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) |   [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct)   | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-1B)  |
| InternVL2_5-2B  | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-2B)  |
| InternVL2_5-4B  | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) |     [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)     | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-4B)  |
| InternVL2_5-8B  | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) |   [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat)   | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-8B)  |
| InternVL2_5-26B |   [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5)   |  [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat)  | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-26B) |
| InternVL2_5-38B |   [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5)   |    [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)    | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-38B) |
| InternVL2_5-78B |   [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5)   |    [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct)    | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-78B) |

## Model Architecture

As shown in the following figure, InternVL 2.5 retains the same model architecture as its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 2.5 and Qwen 2.5, using a randomly initialized MLP projector.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BiiyXN6NOk0p-3rl3ueyL.png)

As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448×448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.

## Training Strategy

### Dynamic High-Resolution for Multimodal Data

In InternVL 2.0 and 2.5, we extend the dynamic high-resolution training approach, enhancing its capabilities to handle multi-image and video datasets.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/xoMY6rwRrNxbAGYPNyU8g.png)

- For single-image datasets, the total number of tiles `n_max` are allocated to a single image for maximum resolution. Visual tokens are enclosed in `<img>` and `</img>` tags.

- For multi-image datasets, the total number of tiles `n_max` are distributed across all images in a sample. Each image is labeled with auxiliary tags like `Image-1` and enclosed in `<img>` and `</img>` tags.

- For videos, each frame is resized to 448×448. Frames are labeled with tags like `Frame-1` and enclosed in `<img>` and `</img>` tags, similar to images.

### Single Model Training Pipeline

The training pipeline for a single model in InternVL 2.5 is structured across three stages, designed to enhance the model's visual perception and multimodal capabilities.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5NduZeCPLgPJTFr0RGTq3.png)

- **Stage 1: MLP Warmup.** In this stage, only the MLP projector is trained while the vision encoder and language model are frozen. A dynamic high-resolution training strategy is applied for better performance, despite increased cost. This phase ensures robust cross-modal alignment and prepares the model for stable multimodal training.

- **Stage 1.5: ViT Incremental Learning (Optional).** This stage allows incremental training of the vision encoder and MLP projector using the same data as Stage 1. It enhances the encoder’s ability to handle rare domains like multilingual OCR and mathematical charts. Once trained, the encoder can be reused across LLMs without retraining, making this stage optional unless new domains are introduced.

- **Stage 2: Full Model Instruction Tuning.** The entire model is trained on high-quality multimodal instruction datasets. Strict data quality controls are enforced to prevent degradation of the LLM, as noisy data can cause issues like repetitive or incorrect outputs. After this stage, the training process is complete.

### Progressive Scaling Strategy

We introduce a progressive scaling strategy to align the vision encoder with LLMs efficiently. This approach trains with smaller LLMs first (e.g., 20B) to optimize foundational visual capabilities and cross-modal alignment before transferring the vision encoder to larger LLMs (e.g., 72B) without retraining. This reuse skips intermediate stages for larger models.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/UoNUyS7ctN5pBxNv9KnzH.png)

Compared to Qwen2-VL's 1.4 trillion tokens, InternVL2.5-78B uses only 120 billion tokens—less than one-tenth. This strategy minimizes redundancy, maximizes pre-trained component reuse, and enables efficient training for complex vision-language tasks.

### Training Enhancements

To improve real-world adaptability and performance, we introduce two key techniques:

- **Random JPEG Compression**: Random JPEG compression with quality levels between 75 and 100 is applied as a data augmentation technique. This simulates image degradation from internet sources, enhancing the model's robustness to noisy images.

- **Loss Reweighting**: To balance the NTP loss across responses of different lengths, we use a reweighting strategy called **square averaging**. This method balances contributions from responses of varying lengths, mitigating biases toward longer or shorter responses.

### Data Organization

#### Dataset Configuration

In InternVL 2.0 and 2.5, the organization of the training data is controlled by several key parameters to optimize the balance and distribution of datasets during training.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/2LJe24b1ua3gjI9gDitVl.png)

- **Data Augmentation:** JPEG compression is applied conditionally: enabled for image datasets to enhance robustness and disabled for video datasets to maintain consistent frame quality.

- **Maximum Tile Number:** The parameter `n_max` controls the maximum tiles per dataset. For example, higher values (24–36) are used for multi-image or high-resolution data, lower values (6–12) for standard images, and 1 for videos.

- **Repeat Factor:** The repeat factor `r` adjusts dataset sampling frequency. Values below 1 reduce a dataset's weight, while values above 1 increase it. This ensures balanced training across tasks and prevents overfitting or underfitting.

#### Data Filtering Pipeline

During development, we found that LLMs are highly sensitive to data noise, with even small anomalies—like outliers or repetitive data—causing abnormal behavior during inference. Repetitive generation, especially in long-form or CoT reasoning tasks, proved particularly harmful.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/aka8ZRiKF3ajdyZBnNFZI.png)

To address this challenge and support future research, we designed an efficient data filtering pipeline to remove low-quality samples.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/70l1UxnX-Arn0NoOGwpth.png)

The pipeline includes two modules, for **pure-text data**, three key strategies are used:

1. **LLM-Based Quality Scoring**: Each sample is scored (0–10) using a pre-trained LLM with domain-specific prompts. Samples scoring below a threshold (e.g., 7) are removed to ensure high-quality data.
2. **Repetition Detection**: Repetitive samples are flagged using LLM-based prompts and manually reviewed. Samples scoring below a stricter threshold (e.g., 3) are excluded to avoid repetitive patterns.
3. **Heuristic Rule-Based Filtering**: Anomalies like abnormal sentence lengths or duplicate lines are detected using rules. Flagged samples undergo manual verification to ensure accuracy before removal.

For **multimodal data**, two strategies are used:

1. **Repetition Detection**: Repetitive samples in non-academic datasets are flagged and manually reviewed to prevent pattern loops. High-quality datasets are exempt from this process.
2. **Heuristic Rule-Based Filtering**: Similar rules are applied to detect visual anomalies, with flagged data verified manually to maintain integrity.

#### Training Data

As shown in the following figure, from InternVL 1.5 to 2.0 and then to 2.5, the fine-tuning data mixture has undergone iterative improvements in scale, quality, and diversity. For more information about the training data, please refer to our technical report.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GaTY9Lde02YzclASMthDa.png)

## Evaluation on Multimodal Capability

### Multimodal Reasoning and Mathematics

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/ihFWMRHbF0lpFTkLqnnj1.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Nrzq0kjlitjp_jrJCqtwX.png)

### OCR, Chart, and Document Understanding

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/3yCMoLjlbsqY7ZJViGzih.png)

### Multi-Image & Real-World Comprehension

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/DSnalmEyhDVQ9GE0GPCla.png)

### Comprehensive Multimodal & Hallucination Evaluation

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Z7Raj3TGDiV1H81pDHtoG.png)

### Visual Grounding

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/lPcIrng8MPSg_PM1hpDPt.png)

### Multimodal Multilingual Understanding

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BPpbAOX36RV8RTnm3j-gs.png)

### Video Understanding

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/tcwH-i1qc8H16En-7AZ5M.png)

## Evaluation on Language Capability

Training InternVL 2.0 models led to a decline in pure language capabilities. InternVL 2.5 addresses this by collecting more high-quality open-source data and filtering out low-quality data, achieving better preservation of pure language performance.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/mxuSKvSY-kfI8zePpXj6y.png)

## Deployment

### LMDeploy

LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.

```sh
pip install lmdeploy>=0.6.4
```

LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.

#### A 'Hello, world' Example

```python
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

model = 'OpenGVLab/InternVL2_5-78B-AWQ'
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192, tp=4))
response = pipe(('describe this image', image))
print(response.text)
```

If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.

#### Multi-images Inference

When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.

```python
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image
from lmdeploy.vl.constants import IMAGE_TOKEN

model = 'OpenGVLab/InternVL2_5-78B-AWQ'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192, tp=4))

image_urls=[
    'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
    'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
]

images = [load_image(img_url) for img_url in image_urls]
# Numbering images improves multi-image conversations
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
print(response.text)
```

#### Batch Prompts Inference

Conducting inference with batch prompts is quite straightforward; just place them within a list structure:

```python
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

model = 'OpenGVLab/InternVL2_5-78B-AWQ'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192, tp=4))

image_urls=[
    "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
    "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
]
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
response = pipe(prompts)
print(response)
```

#### Multi-turn Conversation

There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.

```python
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
from lmdeploy.vl import load_image

model = 'OpenGVLab/InternVL2_5-78B-AWQ'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192, tp=4))

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
print(sess.response.text)
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
print(sess.response.text)
```

#### Service

LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:

```shell
lmdeploy serve api_server OpenGVLab/InternVL2_5-78B-AWQ --server-port 23333 --tp 4
```

To use the OpenAI-style interface, you need to install OpenAI:

```shell
pip install openai
```

Then, use the code below to make the API call:

```python
from openai import OpenAI

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=[{
        'role':
        'user',
        'content': [{
            'type': 'text',
            'text': 'describe this image',
        }, {
            'type': 'image_url',
            'image_url': {
                'url':
                'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
            },
        }],
    }],
    temperature=0.8,
    top_p=0.8)
print(response)
```

## License

This project is released under the MIT License. This project uses the pre-trained Qwen2.5-72B-Instruct as a component, which is licensed under the Qwen License.

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2024expanding,
  title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
  author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
  journal={arXiv preprint arXiv:2412.05271},
  year={2024}
}
@article{gao2024mini,
  title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
  author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
  journal={arXiv preprint arXiv:2410.16261},
  year={2024}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
@inproceedings{chen2024internvl,
  title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={24185--24198},
  year={2024}
}
```