czczup commited on
Commit
4037281
1 Parent(s): da8e588

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -14
README.md CHANGED
@@ -1,12 +1,12 @@
1
  ---
2
  license: mit
3
  datasets:
4
- - laion/laion2B-en
5
- - laion/laion-coco
6
- - laion/laion2B-multi
7
- - kakaobrain/coyo-700m
8
- - conceptual_captions
9
- - wanng/wukong100m
10
  pipeline_tag: image-feature-extraction
11
  new_version: OpenGVLab/InternViT-300M-448px-V2_5
12
  ---
@@ -24,12 +24,13 @@ new_version: OpenGVLab/InternViT-300M-448px-V2_5
24
  This update primarily focuses on enhancing the efficiency of the vision foundation model. We developed InternViT-300M-448px by distilling knowledge from the robust vision foundation model, [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5). Like its predecessor, InternViT-300M-448px features a dynamic input resolution of 448×448, with a basic tile size of 448×448. During training, it allows for 1 to 12 tiles, and expands to 1 to 40 tiles during testing. Additionally, it inherits the powerful robustness, OCR capability, and high-resolution processing capacity from InternViT-6B-448px-V1-5.
25
 
26
  ## Model Details
 
27
  - **Model Type:** vision foundation model, feature backbone
28
  - **Model Stats:**
29
  - Params (M): 304
30
  - Image size: 448 x 448, training with 1 - 12 tiles
31
- - **Pretrain Dataset:** LAION-en, LAION-zh, COYO, GRIT, COCO, TextCaps, Objects365, OpenImages, All-Seeing, Wukong-OCR, LaionCOCO-OCR, and other OCR-related datasets.
32
- To enhance the OCR capability of the model, we have incorporated additional OCR data alongside the general caption datasets. Specifically, we utilized PaddleOCR to perform Chinese OCR on images from Wukong and English OCR on images from LAION-COCO.
33
 
34
  ## Model Usage (Image Embeddings)
35
 
@@ -65,16 +66,16 @@ If you find this project useful in your research, please consider citing:
65
  journal={arXiv preprint arXiv:2410.16261},
66
  year={2024}
67
  }
68
- @article{chen2023internvl,
69
- title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
70
- author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
71
- journal={arXiv preprint arXiv:2312.14238},
72
- year={2023}
73
- }
74
  @article{chen2024far,
75
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
76
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
77
  journal={arXiv preprint arXiv:2404.16821},
78
  year={2024}
79
  }
 
 
 
 
 
 
80
  ```
 
1
  ---
2
  license: mit
3
  datasets:
4
+ - laion/laion2B-en
5
+ - laion/laion-coco
6
+ - laion/laion2B-multi
7
+ - kakaobrain/coyo-700m
8
+ - conceptual_captions
9
+ - wanng/wukong100m
10
  pipeline_tag: image-feature-extraction
11
  new_version: OpenGVLab/InternViT-300M-448px-V2_5
12
  ---
 
24
  This update primarily focuses on enhancing the efficiency of the vision foundation model. We developed InternViT-300M-448px by distilling knowledge from the robust vision foundation model, [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5). Like its predecessor, InternViT-300M-448px features a dynamic input resolution of 448×448, with a basic tile size of 448×448. During training, it allows for 1 to 12 tiles, and expands to 1 to 40 tiles during testing. Additionally, it inherits the powerful robustness, OCR capability, and high-resolution processing capacity from InternViT-6B-448px-V1-5.
25
 
26
  ## Model Details
27
+
28
  - **Model Type:** vision foundation model, feature backbone
29
  - **Model Stats:**
30
  - Params (M): 304
31
  - Image size: 448 x 448, training with 1 - 12 tiles
32
+ - **Pretrain Dataset:** LAION-en, LAION-zh, COYO, GRIT, COCO, TextCaps, Objects365, OpenImages, All-Seeing, Wukong-OCR, LaionCOCO-OCR, and other OCR-related datasets.
33
+ To enhance the OCR capability of the model, we have incorporated additional OCR data alongside the general caption datasets. Specifically, we utilized PaddleOCR to perform Chinese OCR on images from Wukong and English OCR on images from LAION-COCO.
34
 
35
  ## Model Usage (Image Embeddings)
36
 
 
66
  journal={arXiv preprint arXiv:2410.16261},
67
  year={2024}
68
  }
 
 
 
 
 
 
69
  @article{chen2024far,
70
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
71
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
72
  journal={arXiv preprint arXiv:2404.16821},
73
  year={2024}
74
  }
75
+ @article{chen2023internvl,
76
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
77
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
78
+ journal={arXiv preprint arXiv:2312.14238},
79
+ year={2023}
80
+ }
81
  ```