Upload folder using huggingface_hub
Browse files- config.json +26 -0
- configuration_intern_vit.py +117 -0
- flash_attention.py +75 -0
- modeling_intern_vit.py +342 -0
- preprocessor_config.json +19 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +635 -0
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"InternVisionModel"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"drop_path_rate": 0.0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_size": 3200,
|
10 |
+
"image_size": 448,
|
11 |
+
"initializer_factor": 0.1,
|
12 |
+
"initializer_range": 1e-10,
|
13 |
+
"intermediate_size": 12800,
|
14 |
+
"layer_norm_eps": 1e-06,
|
15 |
+
"model_type": "intern_vit_6b",
|
16 |
+
"num_attention_heads": 25,
|
17 |
+
"num_channels": 3,
|
18 |
+
"num_hidden_layers": 48,
|
19 |
+
"patch_size": 14,
|
20 |
+
"qk_normalization": true,
|
21 |
+
"qkv_bias": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.32.0",
|
24 |
+
"use_bfloat16": true,
|
25 |
+
"use_flash_attn": true
|
26 |
+
}
|
configuration_intern_vit.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import os
|
7 |
+
from typing import Union
|
8 |
+
|
9 |
+
from transformers.configuration_utils import PretrainedConfig
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class InternVisionConfig(PretrainedConfig):
|
16 |
+
r"""
|
17 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
18 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
19 |
+
|
20 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
21 |
+
documentation from [`PretrainedConfig`] for more information.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
num_channels (`int`, *optional*, defaults to 3):
|
25 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
26 |
+
patch_size (`int`, *optional*, defaults to 14):
|
27 |
+
The size (resolution) of each patch.
|
28 |
+
image_size (`int`, *optional*, defaults to 224):
|
29 |
+
The size (resolution) of each image.
|
30 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
31 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
32 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
33 |
+
Dimensionality of the encoder layers and the pooler layer.
|
34 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
35 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
36 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
37 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
38 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
39 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
43 |
+
Whether to use flash attention mechanism.
|
44 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
45 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
46 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
47 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
48 |
+
The epsilon used by the layer normalization layers.
|
49 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
51 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
52 |
+
Dropout rate for stochastic depth.
|
53 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
54 |
+
The dropout ratio for the attention probabilities.
|
55 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
56 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
57 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
58 |
+
A factor for layer scale.
|
59 |
+
"""
|
60 |
+
|
61 |
+
model_type = 'intern_vit_6b'
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
num_channels=3,
|
66 |
+
patch_size=14,
|
67 |
+
image_size=224,
|
68 |
+
qkv_bias=False,
|
69 |
+
hidden_size=3200,
|
70 |
+
num_attention_heads=25,
|
71 |
+
intermediate_size=12800,
|
72 |
+
qk_normalization=True,
|
73 |
+
num_hidden_layers=48,
|
74 |
+
use_flash_attn=True,
|
75 |
+
hidden_act='gelu',
|
76 |
+
layer_norm_eps=1e-6,
|
77 |
+
dropout=0.0,
|
78 |
+
drop_path_rate=0.0,
|
79 |
+
attention_dropout=0.0,
|
80 |
+
initializer_range=0.02,
|
81 |
+
initializer_factor=0.1,
|
82 |
+
**kwargs,
|
83 |
+
):
|
84 |
+
super().__init__(**kwargs)
|
85 |
+
|
86 |
+
self.hidden_size = hidden_size
|
87 |
+
self.intermediate_size = intermediate_size
|
88 |
+
self.dropout = dropout
|
89 |
+
self.drop_path_rate = drop_path_rate
|
90 |
+
self.num_hidden_layers = num_hidden_layers
|
91 |
+
self.num_attention_heads = num_attention_heads
|
92 |
+
self.num_channels = num_channels
|
93 |
+
self.patch_size = patch_size
|
94 |
+
self.image_size = image_size
|
95 |
+
self.initializer_range = initializer_range
|
96 |
+
self.initializer_factor = initializer_factor
|
97 |
+
self.attention_dropout = attention_dropout
|
98 |
+
self.layer_norm_eps = layer_norm_eps
|
99 |
+
self.hidden_act = hidden_act
|
100 |
+
self.qkv_bias = qkv_bias
|
101 |
+
self.qk_normalization = qk_normalization
|
102 |
+
self.use_flash_attn = use_flash_attn
|
103 |
+
|
104 |
+
@classmethod
|
105 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
106 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
107 |
+
|
108 |
+
if 'vision_config' in config_dict:
|
109 |
+
config_dict = config_dict['vision_config']
|
110 |
+
|
111 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
112 |
+
logger.warning(
|
113 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
114 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
115 |
+
)
|
116 |
+
|
117 |
+
return cls.from_dict(config_dict, **kwargs)
|
flash_attention.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from einops import rearrange
|
4 |
+
|
5 |
+
try: # v1
|
6 |
+
from flash_attn.flash_attn_interface import \
|
7 |
+
flash_attn_unpadded_qkvpacked_func
|
8 |
+
except: # v2
|
9 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
10 |
+
|
11 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
12 |
+
|
13 |
+
|
14 |
+
class FlashAttention(nn.Module):
|
15 |
+
"""Implement the scaled dot product attention with softmax.
|
16 |
+
Arguments
|
17 |
+
---------
|
18 |
+
softmax_scale: The temperature to use for the softmax attention.
|
19 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
20 |
+
runtime)
|
21 |
+
attention_dropout: The dropout rate to apply to the attention
|
22 |
+
(default: 0.0)
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
26 |
+
super().__init__()
|
27 |
+
self.softmax_scale = softmax_scale
|
28 |
+
self.dropout_p = attention_dropout
|
29 |
+
|
30 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
31 |
+
max_s=None, need_weights=False):
|
32 |
+
"""Implements the multihead softmax attention.
|
33 |
+
Arguments
|
34 |
+
---------
|
35 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
36 |
+
if unpadded: (nnz, 3, h, d)
|
37 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
38 |
+
"""
|
39 |
+
assert not need_weights
|
40 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
41 |
+
assert qkv.is_cuda
|
42 |
+
|
43 |
+
if cu_seqlens is None:
|
44 |
+
batch_size = qkv.shape[0]
|
45 |
+
seqlen = qkv.shape[1]
|
46 |
+
if key_padding_mask is None:
|
47 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
48 |
+
max_s = seqlen
|
49 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
50 |
+
device=qkv.device)
|
51 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
52 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
53 |
+
softmax_scale=self.softmax_scale, causal=causal
|
54 |
+
)
|
55 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
56 |
+
else:
|
57 |
+
nheads = qkv.shape[-2]
|
58 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
59 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
60 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
61 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
62 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
63 |
+
softmax_scale=self.softmax_scale, causal=causal
|
64 |
+
)
|
65 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
66 |
+
indices, batch_size, seqlen),
|
67 |
+
'b s (h d) -> b s h d', h=nheads)
|
68 |
+
else:
|
69 |
+
assert max_s is not None
|
70 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
71 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
72 |
+
softmax_scale=self.softmax_scale, causal=causal
|
73 |
+
)
|
74 |
+
|
75 |
+
return output, None
|
modeling_intern_vit.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from einops import rearrange
|
12 |
+
from timm.models.layers import DropPath
|
13 |
+
from torch import nn
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
16 |
+
BaseModelOutputWithPooling)
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
from .configuration_intern_vit import InternVisionConfig
|
21 |
+
|
22 |
+
try:
|
23 |
+
from .flash_attention import FlashAttention
|
24 |
+
has_flash_attn = True
|
25 |
+
except:
|
26 |
+
print('FlashAttention is not installed.')
|
27 |
+
has_flash_attn = False
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class InternRMSNorm(nn.Module):
|
34 |
+
def __init__(self, hidden_size, eps=1e-6):
|
35 |
+
super().__init__()
|
36 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
37 |
+
self.variance_epsilon = eps
|
38 |
+
|
39 |
+
def forward(self, hidden_states):
|
40 |
+
input_dtype = hidden_states.dtype
|
41 |
+
hidden_states = hidden_states.to(torch.float32)
|
42 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
43 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
44 |
+
return self.weight * hidden_states.to(input_dtype)
|
45 |
+
|
46 |
+
|
47 |
+
try:
|
48 |
+
from apex.normalization import FusedRMSNorm
|
49 |
+
|
50 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
51 |
+
|
52 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
53 |
+
except ImportError:
|
54 |
+
# using the normal InternRMSNorm
|
55 |
+
pass
|
56 |
+
except Exception:
|
57 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
58 |
+
pass
|
59 |
+
|
60 |
+
|
61 |
+
class InternVisionEmbeddings(nn.Module):
|
62 |
+
def __init__(self, config: InternVisionConfig):
|
63 |
+
super().__init__()
|
64 |
+
self.config = config
|
65 |
+
self.embed_dim = config.hidden_size
|
66 |
+
self.image_size = config.image_size
|
67 |
+
self.patch_size = config.patch_size
|
68 |
+
|
69 |
+
self.class_embedding = nn.Parameter(
|
70 |
+
torch.randn(1, 1, self.embed_dim),
|
71 |
+
)
|
72 |
+
|
73 |
+
self.patch_embedding = nn.Conv2d(
|
74 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
75 |
+
)
|
76 |
+
|
77 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
78 |
+
self.num_positions = self.num_patches + 1
|
79 |
+
|
80 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
81 |
+
|
82 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
83 |
+
batch_size = pixel_values.shape[0]
|
84 |
+
target_dtype = self.patch_embedding.weight.dtype
|
85 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
86 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
87 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
88 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
89 |
+
embeddings = embeddings + self.position_embedding.to(target_dtype)
|
90 |
+
return embeddings
|
91 |
+
|
92 |
+
|
93 |
+
class InternAttention(nn.Module):
|
94 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
95 |
+
|
96 |
+
def __init__(self, config: InternVisionConfig):
|
97 |
+
super().__init__()
|
98 |
+
self.config = config
|
99 |
+
self.embed_dim = config.hidden_size
|
100 |
+
self.num_heads = config.num_attention_heads
|
101 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
102 |
+
if config.use_flash_attn and not has_flash_attn:
|
103 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
104 |
+
self.head_dim = self.embed_dim // self.num_heads
|
105 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
106 |
+
raise ValueError(
|
107 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
108 |
+
f' {self.num_heads}).'
|
109 |
+
)
|
110 |
+
|
111 |
+
self.scale = self.head_dim ** -0.5
|
112 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
113 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
114 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
115 |
+
|
116 |
+
self.qk_normalization = config.qk_normalization
|
117 |
+
|
118 |
+
if self.qk_normalization:
|
119 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
120 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
121 |
+
|
122 |
+
if self.use_flash_attn:
|
123 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
124 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
125 |
+
|
126 |
+
def _naive_attn(self, x):
|
127 |
+
B, N, C = x.shape
|
128 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
129 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
130 |
+
|
131 |
+
if self.qk_normalization:
|
132 |
+
B_, H_, N_, D_ = q.shape
|
133 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
134 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
135 |
+
|
136 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
137 |
+
attn = attn.softmax(dim=-1)
|
138 |
+
attn = self.attn_drop(attn)
|
139 |
+
|
140 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
141 |
+
x = self.proj(x)
|
142 |
+
x = self.proj_drop(x)
|
143 |
+
return x
|
144 |
+
|
145 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
146 |
+
qkv = self.qkv(x)
|
147 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
148 |
+
|
149 |
+
if self.qk_normalization:
|
150 |
+
q, k, v = qkv.unbind(2)
|
151 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
152 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
153 |
+
qkv = torch.stack([q, k, v], dim=2)
|
154 |
+
|
155 |
+
context, _ = self.inner_attn(
|
156 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
157 |
+
)
|
158 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
159 |
+
outs = self.proj_drop(outs)
|
160 |
+
return outs
|
161 |
+
|
162 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
163 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
164 |
+
return x
|
165 |
+
|
166 |
+
|
167 |
+
class InternMLP(nn.Module):
|
168 |
+
def __init__(self, config: InternVisionConfig):
|
169 |
+
super().__init__()
|
170 |
+
self.config = config
|
171 |
+
self.act = ACT2FN[config.hidden_act]
|
172 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
173 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
174 |
+
|
175 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
176 |
+
hidden_states = self.fc1(hidden_states)
|
177 |
+
hidden_states = self.act(hidden_states)
|
178 |
+
hidden_states = self.fc2(hidden_states)
|
179 |
+
return hidden_states
|
180 |
+
|
181 |
+
|
182 |
+
class InternVisionEncoderLayer(nn.Module):
|
183 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
184 |
+
super().__init__()
|
185 |
+
self.embed_dim = config.hidden_size
|
186 |
+
self.intermediate_size = config.intermediate_size
|
187 |
+
|
188 |
+
self.attn = InternAttention(config)
|
189 |
+
self.mlp = InternMLP(config)
|
190 |
+
self.norm1 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
191 |
+
self.norm2 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
192 |
+
|
193 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
194 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
195 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
196 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
197 |
+
|
198 |
+
def forward(
|
199 |
+
self,
|
200 |
+
hidden_states: torch.Tensor,
|
201 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
202 |
+
"""
|
203 |
+
Args:
|
204 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
205 |
+
"""
|
206 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
207 |
+
|
208 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
209 |
+
|
210 |
+
return hidden_states
|
211 |
+
|
212 |
+
|
213 |
+
class InternVisionEncoder(nn.Module):
|
214 |
+
"""
|
215 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
216 |
+
[`InternEncoderLayer`].
|
217 |
+
|
218 |
+
Args:
|
219 |
+
config (`InternConfig`):
|
220 |
+
The corresponding vision configuration for the `InternEncoder`.
|
221 |
+
"""
|
222 |
+
|
223 |
+
def __init__(self, config: InternVisionConfig):
|
224 |
+
super().__init__()
|
225 |
+
self.config = config
|
226 |
+
# stochastic depth decay rule
|
227 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
228 |
+
self.layers = nn.ModuleList([
|
229 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
230 |
+
self.gradient_checkpointing = True
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
inputs_embeds,
|
235 |
+
output_hidden_states: Optional[bool] = None,
|
236 |
+
return_dict: Optional[bool] = None,
|
237 |
+
) -> Union[Tuple, BaseModelOutput]:
|
238 |
+
r"""
|
239 |
+
Args:
|
240 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
241 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
242 |
+
output_hidden_states (`bool`, *optional*):
|
243 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
244 |
+
for more detail.
|
245 |
+
return_dict (`bool`, *optional*):
|
246 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
247 |
+
"""
|
248 |
+
output_hidden_states = (
|
249 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
250 |
+
)
|
251 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
252 |
+
|
253 |
+
encoder_states = () if output_hidden_states else None
|
254 |
+
hidden_states = inputs_embeds
|
255 |
+
|
256 |
+
for idx, encoder_layer in enumerate(self.layers):
|
257 |
+
if output_hidden_states:
|
258 |
+
encoder_states = encoder_states + (hidden_states,)
|
259 |
+
if self.gradient_checkpointing and self.training:
|
260 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
261 |
+
encoder_layer,
|
262 |
+
hidden_states)
|
263 |
+
else:
|
264 |
+
layer_outputs = encoder_layer(
|
265 |
+
hidden_states,
|
266 |
+
)
|
267 |
+
hidden_states = layer_outputs
|
268 |
+
|
269 |
+
if output_hidden_states:
|
270 |
+
encoder_states = encoder_states + (hidden_states,)
|
271 |
+
|
272 |
+
if not return_dict:
|
273 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
274 |
+
return BaseModelOutput(
|
275 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
276 |
+
)
|
277 |
+
|
278 |
+
|
279 |
+
class InternVisionModel(PreTrainedModel):
|
280 |
+
main_input_name = 'pixel_values'
|
281 |
+
config_class = InternVisionConfig
|
282 |
+
|
283 |
+
def __init__(self, config: InternVisionConfig):
|
284 |
+
super().__init__(config)
|
285 |
+
self.config = config
|
286 |
+
|
287 |
+
self.embeddings = InternVisionEmbeddings(config)
|
288 |
+
self.encoder = InternVisionEncoder(config)
|
289 |
+
|
290 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
291 |
+
pos_emb = self.embeddings.position_embedding
|
292 |
+
_, num_positions, embed_dim = pos_emb.shape
|
293 |
+
cls_emb = pos_emb[:, :1, :]
|
294 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
295 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
296 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
297 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
298 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
299 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
300 |
+
|
301 |
+
def get_input_embeddings(self):
|
302 |
+
return self.embeddings
|
303 |
+
|
304 |
+
def forward(
|
305 |
+
self,
|
306 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
307 |
+
output_hidden_states: Optional[bool] = None,
|
308 |
+
return_dict: Optional[bool] = None,
|
309 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
310 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
311 |
+
output_hidden_states = (
|
312 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
313 |
+
)
|
314 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
315 |
+
|
316 |
+
if pixel_values is None and pixel_embeds is None:
|
317 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
318 |
+
|
319 |
+
if pixel_embeds is not None:
|
320 |
+
hidden_states = pixel_embeds
|
321 |
+
else:
|
322 |
+
if len(pixel_values.shape) == 4:
|
323 |
+
hidden_states = self.embeddings(pixel_values)
|
324 |
+
else:
|
325 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
326 |
+
encoder_outputs = self.encoder(
|
327 |
+
inputs_embeds=hidden_states,
|
328 |
+
output_hidden_states=output_hidden_states,
|
329 |
+
return_dict=return_dict,
|
330 |
+
)
|
331 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
332 |
+
pooled_output = last_hidden_state[:, 0, :]
|
333 |
+
|
334 |
+
if not return_dict:
|
335 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
336 |
+
|
337 |
+
return BaseModelOutputWithPooling(
|
338 |
+
last_hidden_state=last_hidden_state,
|
339 |
+
pooler_output=pooled_output,
|
340 |
+
hidden_states=encoder_outputs.hidden_states,
|
341 |
+
attentions=encoder_outputs.attentions,
|
342 |
+
)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 448,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
7 |
+
"image_mean": [
|
8 |
+
0.485,
|
9 |
+
0.456,
|
10 |
+
0.406
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"size": 224
|
19 |
+
}
|
pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15b8f0b9621d6a84e049b185f1e5c60f14297c3d7d09b63af42926262988980e
|
3 |
+
size 9925937336
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:792258d84bacfef968f4f111b3845d76886c9ac3a1d77b07855ab46e35ae30fd
|
3 |
+
size 1884773857
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 11810502400
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"embeddings.class_embedding": "pytorch_model-00001-of-00002.bin",
|
7 |
+
"embeddings.patch_embedding.bias": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"embeddings.patch_embedding.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"embeddings.position_embedding": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"encoder.layers.0.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"encoder.layers.0.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"encoder.layers.0.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"encoder.layers.0.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"encoder.layers.0.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"encoder.layers.0.ls1": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"encoder.layers.0.ls2": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"encoder.layers.0.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"encoder.layers.0.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"encoder.layers.0.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"encoder.layers.0.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"encoder.layers.0.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"encoder.layers.0.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"encoder.layers.1.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"encoder.layers.1.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"encoder.layers.1.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"encoder.layers.1.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"encoder.layers.1.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"encoder.layers.1.ls1": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"encoder.layers.1.ls2": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"encoder.layers.1.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"encoder.layers.1.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"encoder.layers.1.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"encoder.layers.1.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"encoder.layers.1.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"encoder.layers.1.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"encoder.layers.10.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"encoder.layers.10.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"encoder.layers.10.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"encoder.layers.10.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"encoder.layers.10.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"encoder.layers.10.ls1": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"encoder.layers.10.ls2": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"encoder.layers.10.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"encoder.layers.10.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"encoder.layers.10.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"encoder.layers.10.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"encoder.layers.10.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"encoder.layers.10.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"encoder.layers.11.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"encoder.layers.11.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"encoder.layers.11.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"encoder.layers.11.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"encoder.layers.11.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"encoder.layers.11.ls1": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"encoder.layers.11.ls2": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"encoder.layers.11.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"encoder.layers.11.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"encoder.layers.11.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"encoder.layers.11.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"encoder.layers.11.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"encoder.layers.11.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"encoder.layers.12.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"encoder.layers.12.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"encoder.layers.12.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"encoder.layers.12.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"encoder.layers.12.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"encoder.layers.12.ls1": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"encoder.layers.12.ls2": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"encoder.layers.12.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"encoder.layers.12.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"encoder.layers.12.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"encoder.layers.12.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"encoder.layers.12.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"encoder.layers.12.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"encoder.layers.13.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"encoder.layers.13.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"encoder.layers.13.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"encoder.layers.13.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"encoder.layers.13.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"encoder.layers.13.ls1": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"encoder.layers.13.ls2": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"encoder.layers.13.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"encoder.layers.13.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"encoder.layers.13.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"encoder.layers.13.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"encoder.layers.13.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"encoder.layers.13.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"encoder.layers.14.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"encoder.layers.14.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"encoder.layers.14.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"encoder.layers.14.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"encoder.layers.14.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"encoder.layers.14.ls1": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"encoder.layers.14.ls2": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"encoder.layers.14.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"encoder.layers.14.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"encoder.layers.14.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"encoder.layers.14.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"encoder.layers.14.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"encoder.layers.14.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"encoder.layers.15.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"encoder.layers.15.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"encoder.layers.15.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"encoder.layers.15.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"encoder.layers.15.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"encoder.layers.15.ls1": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"encoder.layers.15.ls2": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"encoder.layers.15.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"encoder.layers.15.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"encoder.layers.15.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"encoder.layers.15.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"encoder.layers.15.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"encoder.layers.15.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"encoder.layers.16.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"encoder.layers.16.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"encoder.layers.16.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"encoder.layers.16.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"encoder.layers.16.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"encoder.layers.16.ls1": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"encoder.layers.16.ls2": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"encoder.layers.16.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"encoder.layers.16.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"encoder.layers.16.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"encoder.layers.16.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"encoder.layers.16.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"encoder.layers.16.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"encoder.layers.17.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"encoder.layers.17.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"encoder.layers.17.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"encoder.layers.17.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"encoder.layers.17.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"encoder.layers.17.ls1": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"encoder.layers.17.ls2": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"encoder.layers.17.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"encoder.layers.17.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"encoder.layers.17.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"encoder.layers.17.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"encoder.layers.17.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"encoder.layers.17.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"encoder.layers.18.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"encoder.layers.18.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"encoder.layers.18.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"encoder.layers.18.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
144 |
+
"encoder.layers.18.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
145 |
+
"encoder.layers.18.ls1": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"encoder.layers.18.ls2": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"encoder.layers.18.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"encoder.layers.18.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"encoder.layers.18.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"encoder.layers.18.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"encoder.layers.18.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"encoder.layers.18.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
153 |
+
"encoder.layers.19.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
154 |
+
"encoder.layers.19.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
155 |
+
"encoder.layers.19.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
156 |
+
"encoder.layers.19.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
157 |
+
"encoder.layers.19.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
158 |
+
"encoder.layers.19.ls1": "pytorch_model-00001-of-00002.bin",
|
159 |
+
"encoder.layers.19.ls2": "pytorch_model-00001-of-00002.bin",
|
160 |
+
"encoder.layers.19.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
161 |
+
"encoder.layers.19.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
162 |
+
"encoder.layers.19.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
163 |
+
"encoder.layers.19.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"encoder.layers.19.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"encoder.layers.19.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"encoder.layers.2.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"encoder.layers.2.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"encoder.layers.2.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
+
"encoder.layers.2.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
170 |
+
"encoder.layers.2.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
171 |
+
"encoder.layers.2.ls1": "pytorch_model-00001-of-00002.bin",
|
172 |
+
"encoder.layers.2.ls2": "pytorch_model-00001-of-00002.bin",
|
173 |
+
"encoder.layers.2.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
174 |
+
"encoder.layers.2.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
175 |
+
"encoder.layers.2.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
176 |
+
"encoder.layers.2.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
177 |
+
"encoder.layers.2.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
+
"encoder.layers.2.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
179 |
+
"encoder.layers.20.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
180 |
+
"encoder.layers.20.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
181 |
+
"encoder.layers.20.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
182 |
+
"encoder.layers.20.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
183 |
+
"encoder.layers.20.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
184 |
+
"encoder.layers.20.ls1": "pytorch_model-00001-of-00002.bin",
|
185 |
+
"encoder.layers.20.ls2": "pytorch_model-00001-of-00002.bin",
|
186 |
+
"encoder.layers.20.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
187 |
+
"encoder.layers.20.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
188 |
+
"encoder.layers.20.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
189 |
+
"encoder.layers.20.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
190 |
+
"encoder.layers.20.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
191 |
+
"encoder.layers.20.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
192 |
+
"encoder.layers.21.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
193 |
+
"encoder.layers.21.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
194 |
+
"encoder.layers.21.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
195 |
+
"encoder.layers.21.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
196 |
+
"encoder.layers.21.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
197 |
+
"encoder.layers.21.ls1": "pytorch_model-00001-of-00002.bin",
|
198 |
+
"encoder.layers.21.ls2": "pytorch_model-00001-of-00002.bin",
|
199 |
+
"encoder.layers.21.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
200 |
+
"encoder.layers.21.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
201 |
+
"encoder.layers.21.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
202 |
+
"encoder.layers.21.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
203 |
+
"encoder.layers.21.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
204 |
+
"encoder.layers.21.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
205 |
+
"encoder.layers.22.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
206 |
+
"encoder.layers.22.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
207 |
+
"encoder.layers.22.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
208 |
+
"encoder.layers.22.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
209 |
+
"encoder.layers.22.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
210 |
+
"encoder.layers.22.ls1": "pytorch_model-00001-of-00002.bin",
|
211 |
+
"encoder.layers.22.ls2": "pytorch_model-00001-of-00002.bin",
|
212 |
+
"encoder.layers.22.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
213 |
+
"encoder.layers.22.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
214 |
+
"encoder.layers.22.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
215 |
+
"encoder.layers.22.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
216 |
+
"encoder.layers.22.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
+
"encoder.layers.22.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
+
"encoder.layers.23.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
+
"encoder.layers.23.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"encoder.layers.23.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"encoder.layers.23.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"encoder.layers.23.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"encoder.layers.23.ls1": "pytorch_model-00001-of-00002.bin",
|
224 |
+
"encoder.layers.23.ls2": "pytorch_model-00001-of-00002.bin",
|
225 |
+
"encoder.layers.23.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
226 |
+
"encoder.layers.23.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
227 |
+
"encoder.layers.23.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
228 |
+
"encoder.layers.23.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
229 |
+
"encoder.layers.23.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
230 |
+
"encoder.layers.23.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
231 |
+
"encoder.layers.24.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
232 |
+
"encoder.layers.24.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
233 |
+
"encoder.layers.24.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
234 |
+
"encoder.layers.24.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
235 |
+
"encoder.layers.24.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
236 |
+
"encoder.layers.24.ls1": "pytorch_model-00001-of-00002.bin",
|
237 |
+
"encoder.layers.24.ls2": "pytorch_model-00001-of-00002.bin",
|
238 |
+
"encoder.layers.24.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
239 |
+
"encoder.layers.24.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
240 |
+
"encoder.layers.24.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
241 |
+
"encoder.layers.24.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
+
"encoder.layers.24.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"encoder.layers.24.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"encoder.layers.25.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"encoder.layers.25.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"encoder.layers.25.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"encoder.layers.25.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"encoder.layers.25.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
249 |
+
"encoder.layers.25.ls1": "pytorch_model-00001-of-00002.bin",
|
250 |
+
"encoder.layers.25.ls2": "pytorch_model-00001-of-00002.bin",
|
251 |
+
"encoder.layers.25.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
252 |
+
"encoder.layers.25.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
253 |
+
"encoder.layers.25.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
254 |
+
"encoder.layers.25.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
255 |
+
"encoder.layers.25.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
256 |
+
"encoder.layers.25.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
257 |
+
"encoder.layers.26.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
258 |
+
"encoder.layers.26.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
259 |
+
"encoder.layers.26.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
260 |
+
"encoder.layers.26.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
261 |
+
"encoder.layers.26.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
262 |
+
"encoder.layers.26.ls1": "pytorch_model-00001-of-00002.bin",
|
263 |
+
"encoder.layers.26.ls2": "pytorch_model-00001-of-00002.bin",
|
264 |
+
"encoder.layers.26.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
265 |
+
"encoder.layers.26.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
266 |
+
"encoder.layers.26.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
267 |
+
"encoder.layers.26.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
268 |
+
"encoder.layers.26.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"encoder.layers.26.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"encoder.layers.27.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"encoder.layers.27.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"encoder.layers.27.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"encoder.layers.27.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"encoder.layers.27.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"encoder.layers.27.ls1": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"encoder.layers.27.ls2": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"encoder.layers.27.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"encoder.layers.27.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"encoder.layers.27.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"encoder.layers.27.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"encoder.layers.27.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"encoder.layers.27.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"encoder.layers.28.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"encoder.layers.28.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"encoder.layers.28.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"encoder.layers.28.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"encoder.layers.28.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"encoder.layers.28.ls1": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"encoder.layers.28.ls2": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"encoder.layers.28.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"encoder.layers.28.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"encoder.layers.28.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"encoder.layers.28.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"encoder.layers.28.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"encoder.layers.28.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"encoder.layers.29.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
297 |
+
"encoder.layers.29.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
298 |
+
"encoder.layers.29.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
299 |
+
"encoder.layers.29.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
300 |
+
"encoder.layers.29.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
301 |
+
"encoder.layers.29.ls1": "pytorch_model-00001-of-00002.bin",
|
302 |
+
"encoder.layers.29.ls2": "pytorch_model-00001-of-00002.bin",
|
303 |
+
"encoder.layers.29.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
304 |
+
"encoder.layers.29.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
305 |
+
"encoder.layers.29.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
306 |
+
"encoder.layers.29.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
307 |
+
"encoder.layers.29.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
308 |
+
"encoder.layers.29.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
309 |
+
"encoder.layers.3.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
310 |
+
"encoder.layers.3.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
311 |
+
"encoder.layers.3.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
312 |
+
"encoder.layers.3.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
313 |
+
"encoder.layers.3.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
314 |
+
"encoder.layers.3.ls1": "pytorch_model-00001-of-00002.bin",
|
315 |
+
"encoder.layers.3.ls2": "pytorch_model-00001-of-00002.bin",
|
316 |
+
"encoder.layers.3.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
317 |
+
"encoder.layers.3.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
318 |
+
"encoder.layers.3.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
319 |
+
"encoder.layers.3.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
320 |
+
"encoder.layers.3.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
321 |
+
"encoder.layers.3.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
322 |
+
"encoder.layers.30.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
323 |
+
"encoder.layers.30.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
324 |
+
"encoder.layers.30.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
325 |
+
"encoder.layers.30.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
326 |
+
"encoder.layers.30.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
327 |
+
"encoder.layers.30.ls1": "pytorch_model-00001-of-00002.bin",
|
328 |
+
"encoder.layers.30.ls2": "pytorch_model-00001-of-00002.bin",
|
329 |
+
"encoder.layers.30.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
330 |
+
"encoder.layers.30.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
331 |
+
"encoder.layers.30.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
332 |
+
"encoder.layers.30.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
333 |
+
"encoder.layers.30.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
334 |
+
"encoder.layers.30.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
335 |
+
"encoder.layers.31.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
336 |
+
"encoder.layers.31.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
337 |
+
"encoder.layers.31.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
338 |
+
"encoder.layers.31.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
339 |
+
"encoder.layers.31.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
340 |
+
"encoder.layers.31.ls1": "pytorch_model-00001-of-00002.bin",
|
341 |
+
"encoder.layers.31.ls2": "pytorch_model-00001-of-00002.bin",
|
342 |
+
"encoder.layers.31.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
343 |
+
"encoder.layers.31.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
344 |
+
"encoder.layers.31.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
345 |
+
"encoder.layers.31.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
346 |
+
"encoder.layers.31.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
347 |
+
"encoder.layers.31.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
348 |
+
"encoder.layers.32.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
349 |
+
"encoder.layers.32.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
350 |
+
"encoder.layers.32.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
351 |
+
"encoder.layers.32.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
352 |
+
"encoder.layers.32.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
353 |
+
"encoder.layers.32.ls1": "pytorch_model-00001-of-00002.bin",
|
354 |
+
"encoder.layers.32.ls2": "pytorch_model-00001-of-00002.bin",
|
355 |
+
"encoder.layers.32.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
356 |
+
"encoder.layers.32.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
357 |
+
"encoder.layers.32.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
358 |
+
"encoder.layers.32.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
359 |
+
"encoder.layers.32.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
360 |
+
"encoder.layers.32.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
361 |
+
"encoder.layers.33.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
362 |
+
"encoder.layers.33.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
363 |
+
"encoder.layers.33.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
364 |
+
"encoder.layers.33.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
365 |
+
"encoder.layers.33.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
366 |
+
"encoder.layers.33.ls1": "pytorch_model-00001-of-00002.bin",
|
367 |
+
"encoder.layers.33.ls2": "pytorch_model-00001-of-00002.bin",
|
368 |
+
"encoder.layers.33.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
369 |
+
"encoder.layers.33.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
370 |
+
"encoder.layers.33.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
371 |
+
"encoder.layers.33.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
372 |
+
"encoder.layers.33.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
373 |
+
"encoder.layers.33.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
374 |
+
"encoder.layers.34.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
375 |
+
"encoder.layers.34.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
376 |
+
"encoder.layers.34.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
377 |
+
"encoder.layers.34.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
378 |
+
"encoder.layers.34.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
379 |
+
"encoder.layers.34.ls1": "pytorch_model-00001-of-00002.bin",
|
380 |
+
"encoder.layers.34.ls2": "pytorch_model-00001-of-00002.bin",
|
381 |
+
"encoder.layers.34.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
382 |
+
"encoder.layers.34.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
383 |
+
"encoder.layers.34.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
384 |
+
"encoder.layers.34.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
385 |
+
"encoder.layers.34.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
386 |
+
"encoder.layers.34.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
387 |
+
"encoder.layers.35.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
388 |
+
"encoder.layers.35.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
389 |
+
"encoder.layers.35.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
390 |
+
"encoder.layers.35.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
391 |
+
"encoder.layers.35.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
392 |
+
"encoder.layers.35.ls1": "pytorch_model-00001-of-00002.bin",
|
393 |
+
"encoder.layers.35.ls2": "pytorch_model-00001-of-00002.bin",
|
394 |
+
"encoder.layers.35.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
395 |
+
"encoder.layers.35.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
396 |
+
"encoder.layers.35.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
397 |
+
"encoder.layers.35.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
398 |
+
"encoder.layers.35.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
399 |
+
"encoder.layers.35.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
400 |
+
"encoder.layers.36.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
401 |
+
"encoder.layers.36.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
402 |
+
"encoder.layers.36.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
403 |
+
"encoder.layers.36.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
404 |
+
"encoder.layers.36.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
405 |
+
"encoder.layers.36.ls1": "pytorch_model-00001-of-00002.bin",
|
406 |
+
"encoder.layers.36.ls2": "pytorch_model-00001-of-00002.bin",
|
407 |
+
"encoder.layers.36.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
408 |
+
"encoder.layers.36.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
409 |
+
"encoder.layers.36.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
410 |
+
"encoder.layers.36.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
411 |
+
"encoder.layers.36.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
412 |
+
"encoder.layers.36.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
413 |
+
"encoder.layers.37.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
414 |
+
"encoder.layers.37.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
415 |
+
"encoder.layers.37.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
416 |
+
"encoder.layers.37.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
417 |
+
"encoder.layers.37.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
418 |
+
"encoder.layers.37.ls1": "pytorch_model-00001-of-00002.bin",
|
419 |
+
"encoder.layers.37.ls2": "pytorch_model-00001-of-00002.bin",
|
420 |
+
"encoder.layers.37.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
421 |
+
"encoder.layers.37.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
422 |
+
"encoder.layers.37.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
423 |
+
"encoder.layers.37.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
424 |
+
"encoder.layers.37.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
425 |
+
"encoder.layers.37.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
426 |
+
"encoder.layers.38.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
427 |
+
"encoder.layers.38.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
428 |
+
"encoder.layers.38.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
429 |
+
"encoder.layers.38.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
430 |
+
"encoder.layers.38.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
431 |
+
"encoder.layers.38.ls1": "pytorch_model-00001-of-00002.bin",
|
432 |
+
"encoder.layers.38.ls2": "pytorch_model-00001-of-00002.bin",
|
433 |
+
"encoder.layers.38.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
434 |
+
"encoder.layers.38.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
435 |
+
"encoder.layers.38.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
436 |
+
"encoder.layers.38.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
437 |
+
"encoder.layers.38.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
438 |
+
"encoder.layers.38.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
439 |
+
"encoder.layers.39.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
440 |
+
"encoder.layers.39.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
441 |
+
"encoder.layers.39.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
442 |
+
"encoder.layers.39.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
443 |
+
"encoder.layers.39.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
444 |
+
"encoder.layers.39.ls1": "pytorch_model-00001-of-00002.bin",
|
445 |
+
"encoder.layers.39.ls2": "pytorch_model-00001-of-00002.bin",
|
446 |
+
"encoder.layers.39.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
447 |
+
"encoder.layers.39.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
448 |
+
"encoder.layers.39.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
449 |
+
"encoder.layers.39.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
450 |
+
"encoder.layers.39.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
451 |
+
"encoder.layers.39.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
452 |
+
"encoder.layers.4.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
453 |
+
"encoder.layers.4.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
454 |
+
"encoder.layers.4.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
455 |
+
"encoder.layers.4.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
456 |
+
"encoder.layers.4.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
457 |
+
"encoder.layers.4.ls1": "pytorch_model-00001-of-00002.bin",
|
458 |
+
"encoder.layers.4.ls2": "pytorch_model-00001-of-00002.bin",
|
459 |
+
"encoder.layers.4.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
460 |
+
"encoder.layers.4.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
461 |
+
"encoder.layers.4.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
462 |
+
"encoder.layers.4.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
463 |
+
"encoder.layers.4.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
464 |
+
"encoder.layers.4.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
465 |
+
"encoder.layers.40.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
466 |
+
"encoder.layers.40.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
467 |
+
"encoder.layers.40.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
468 |
+
"encoder.layers.40.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
469 |
+
"encoder.layers.40.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
470 |
+
"encoder.layers.40.ls1": "pytorch_model-00001-of-00002.bin",
|
471 |
+
"encoder.layers.40.ls2": "pytorch_model-00001-of-00002.bin",
|
472 |
+
"encoder.layers.40.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
473 |
+
"encoder.layers.40.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
474 |
+
"encoder.layers.40.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
475 |
+
"encoder.layers.40.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
476 |
+
"encoder.layers.40.norm1.weight": "pytorch_model-00002-of-00002.bin",
|
477 |
+
"encoder.layers.40.norm2.weight": "pytorch_model-00002-of-00002.bin",
|
478 |
+
"encoder.layers.41.attn.k_norm.weight": "pytorch_model-00002-of-00002.bin",
|
479 |
+
"encoder.layers.41.attn.proj.bias": "pytorch_model-00002-of-00002.bin",
|
480 |
+
"encoder.layers.41.attn.proj.weight": "pytorch_model-00002-of-00002.bin",
|
481 |
+
"encoder.layers.41.attn.q_norm.weight": "pytorch_model-00002-of-00002.bin",
|
482 |
+
"encoder.layers.41.attn.qkv.weight": "pytorch_model-00002-of-00002.bin",
|
483 |
+
"encoder.layers.41.ls1": "pytorch_model-00002-of-00002.bin",
|
484 |
+
"encoder.layers.41.ls2": "pytorch_model-00002-of-00002.bin",
|
485 |
+
"encoder.layers.41.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
486 |
+
"encoder.layers.41.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
487 |
+
"encoder.layers.41.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
488 |
+
"encoder.layers.41.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
489 |
+
"encoder.layers.41.norm1.weight": "pytorch_model-00002-of-00002.bin",
|
490 |
+
"encoder.layers.41.norm2.weight": "pytorch_model-00002-of-00002.bin",
|
491 |
+
"encoder.layers.42.attn.k_norm.weight": "pytorch_model-00002-of-00002.bin",
|
492 |
+
"encoder.layers.42.attn.proj.bias": "pytorch_model-00002-of-00002.bin",
|
493 |
+
"encoder.layers.42.attn.proj.weight": "pytorch_model-00002-of-00002.bin",
|
494 |
+
"encoder.layers.42.attn.q_norm.weight": "pytorch_model-00002-of-00002.bin",
|
495 |
+
"encoder.layers.42.attn.qkv.weight": "pytorch_model-00002-of-00002.bin",
|
496 |
+
"encoder.layers.42.ls1": "pytorch_model-00002-of-00002.bin",
|
497 |
+
"encoder.layers.42.ls2": "pytorch_model-00002-of-00002.bin",
|
498 |
+
"encoder.layers.42.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
499 |
+
"encoder.layers.42.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
500 |
+
"encoder.layers.42.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
501 |
+
"encoder.layers.42.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
502 |
+
"encoder.layers.42.norm1.weight": "pytorch_model-00002-of-00002.bin",
|
503 |
+
"encoder.layers.42.norm2.weight": "pytorch_model-00002-of-00002.bin",
|
504 |
+
"encoder.layers.43.attn.k_norm.weight": "pytorch_model-00002-of-00002.bin",
|
505 |
+
"encoder.layers.43.attn.proj.bias": "pytorch_model-00002-of-00002.bin",
|
506 |
+
"encoder.layers.43.attn.proj.weight": "pytorch_model-00002-of-00002.bin",
|
507 |
+
"encoder.layers.43.attn.q_norm.weight": "pytorch_model-00002-of-00002.bin",
|
508 |
+
"encoder.layers.43.attn.qkv.weight": "pytorch_model-00002-of-00002.bin",
|
509 |
+
"encoder.layers.43.ls1": "pytorch_model-00002-of-00002.bin",
|
510 |
+
"encoder.layers.43.ls2": "pytorch_model-00002-of-00002.bin",
|
511 |
+
"encoder.layers.43.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
512 |
+
"encoder.layers.43.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
513 |
+
"encoder.layers.43.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
514 |
+
"encoder.layers.43.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
515 |
+
"encoder.layers.43.norm1.weight": "pytorch_model-00002-of-00002.bin",
|
516 |
+
"encoder.layers.43.norm2.weight": "pytorch_model-00002-of-00002.bin",
|
517 |
+
"encoder.layers.44.attn.k_norm.weight": "pytorch_model-00002-of-00002.bin",
|
518 |
+
"encoder.layers.44.attn.proj.bias": "pytorch_model-00002-of-00002.bin",
|
519 |
+
"encoder.layers.44.attn.proj.weight": "pytorch_model-00002-of-00002.bin",
|
520 |
+
"encoder.layers.44.attn.q_norm.weight": "pytorch_model-00002-of-00002.bin",
|
521 |
+
"encoder.layers.44.attn.qkv.weight": "pytorch_model-00002-of-00002.bin",
|
522 |
+
"encoder.layers.44.ls1": "pytorch_model-00002-of-00002.bin",
|
523 |
+
"encoder.layers.44.ls2": "pytorch_model-00002-of-00002.bin",
|
524 |
+
"encoder.layers.44.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
525 |
+
"encoder.layers.44.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
526 |
+
"encoder.layers.44.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
527 |
+
"encoder.layers.44.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
528 |
+
"encoder.layers.44.norm1.weight": "pytorch_model-00002-of-00002.bin",
|
529 |
+
"encoder.layers.44.norm2.weight": "pytorch_model-00002-of-00002.bin",
|
530 |
+
"encoder.layers.45.attn.k_norm.weight": "pytorch_model-00002-of-00002.bin",
|
531 |
+
"encoder.layers.45.attn.proj.bias": "pytorch_model-00002-of-00002.bin",
|
532 |
+
"encoder.layers.45.attn.proj.weight": "pytorch_model-00002-of-00002.bin",
|
533 |
+
"encoder.layers.45.attn.q_norm.weight": "pytorch_model-00002-of-00002.bin",
|
534 |
+
"encoder.layers.45.attn.qkv.weight": "pytorch_model-00002-of-00002.bin",
|
535 |
+
"encoder.layers.45.ls1": "pytorch_model-00002-of-00002.bin",
|
536 |
+
"encoder.layers.45.ls2": "pytorch_model-00002-of-00002.bin",
|
537 |
+
"encoder.layers.45.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
538 |
+
"encoder.layers.45.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
539 |
+
"encoder.layers.45.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
540 |
+
"encoder.layers.45.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
541 |
+
"encoder.layers.45.norm1.weight": "pytorch_model-00002-of-00002.bin",
|
542 |
+
"encoder.layers.45.norm2.weight": "pytorch_model-00002-of-00002.bin",
|
543 |
+
"encoder.layers.46.attn.k_norm.weight": "pytorch_model-00002-of-00002.bin",
|
544 |
+
"encoder.layers.46.attn.proj.bias": "pytorch_model-00002-of-00002.bin",
|
545 |
+
"encoder.layers.46.attn.proj.weight": "pytorch_model-00002-of-00002.bin",
|
546 |
+
"encoder.layers.46.attn.q_norm.weight": "pytorch_model-00002-of-00002.bin",
|
547 |
+
"encoder.layers.46.attn.qkv.weight": "pytorch_model-00002-of-00002.bin",
|
548 |
+
"encoder.layers.46.ls1": "pytorch_model-00002-of-00002.bin",
|
549 |
+
"encoder.layers.46.ls2": "pytorch_model-00002-of-00002.bin",
|
550 |
+
"encoder.layers.46.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
551 |
+
"encoder.layers.46.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
552 |
+
"encoder.layers.46.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
553 |
+
"encoder.layers.46.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
554 |
+
"encoder.layers.46.norm1.weight": "pytorch_model-00002-of-00002.bin",
|
555 |
+
"encoder.layers.46.norm2.weight": "pytorch_model-00002-of-00002.bin",
|
556 |
+
"encoder.layers.47.attn.k_norm.weight": "pytorch_model-00002-of-00002.bin",
|
557 |
+
"encoder.layers.47.attn.proj.bias": "pytorch_model-00002-of-00002.bin",
|
558 |
+
"encoder.layers.47.attn.proj.weight": "pytorch_model-00002-of-00002.bin",
|
559 |
+
"encoder.layers.47.attn.q_norm.weight": "pytorch_model-00002-of-00002.bin",
|
560 |
+
"encoder.layers.47.attn.qkv.weight": "pytorch_model-00002-of-00002.bin",
|
561 |
+
"encoder.layers.47.ls1": "pytorch_model-00002-of-00002.bin",
|
562 |
+
"encoder.layers.47.ls2": "pytorch_model-00002-of-00002.bin",
|
563 |
+
"encoder.layers.47.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
564 |
+
"encoder.layers.47.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
565 |
+
"encoder.layers.47.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
566 |
+
"encoder.layers.47.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
567 |
+
"encoder.layers.47.norm1.weight": "pytorch_model-00002-of-00002.bin",
|
568 |
+
"encoder.layers.47.norm2.weight": "pytorch_model-00002-of-00002.bin",
|
569 |
+
"encoder.layers.5.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
570 |
+
"encoder.layers.5.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
571 |
+
"encoder.layers.5.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
572 |
+
"encoder.layers.5.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
573 |
+
"encoder.layers.5.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
574 |
+
"encoder.layers.5.ls1": "pytorch_model-00001-of-00002.bin",
|
575 |
+
"encoder.layers.5.ls2": "pytorch_model-00001-of-00002.bin",
|
576 |
+
"encoder.layers.5.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
577 |
+
"encoder.layers.5.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
578 |
+
"encoder.layers.5.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
579 |
+
"encoder.layers.5.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
580 |
+
"encoder.layers.5.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
581 |
+
"encoder.layers.5.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
582 |
+
"encoder.layers.6.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
583 |
+
"encoder.layers.6.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
584 |
+
"encoder.layers.6.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
585 |
+
"encoder.layers.6.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
586 |
+
"encoder.layers.6.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
587 |
+
"encoder.layers.6.ls1": "pytorch_model-00001-of-00002.bin",
|
588 |
+
"encoder.layers.6.ls2": "pytorch_model-00001-of-00002.bin",
|
589 |
+
"encoder.layers.6.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
590 |
+
"encoder.layers.6.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
591 |
+
"encoder.layers.6.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
592 |
+
"encoder.layers.6.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
593 |
+
"encoder.layers.6.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
594 |
+
"encoder.layers.6.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
595 |
+
"encoder.layers.7.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
596 |
+
"encoder.layers.7.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
597 |
+
"encoder.layers.7.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
598 |
+
"encoder.layers.7.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
599 |
+
"encoder.layers.7.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
600 |
+
"encoder.layers.7.ls1": "pytorch_model-00001-of-00002.bin",
|
601 |
+
"encoder.layers.7.ls2": "pytorch_model-00001-of-00002.bin",
|
602 |
+
"encoder.layers.7.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
603 |
+
"encoder.layers.7.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
604 |
+
"encoder.layers.7.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
605 |
+
"encoder.layers.7.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
606 |
+
"encoder.layers.7.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
607 |
+
"encoder.layers.7.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
608 |
+
"encoder.layers.8.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
609 |
+
"encoder.layers.8.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
610 |
+
"encoder.layers.8.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
611 |
+
"encoder.layers.8.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
612 |
+
"encoder.layers.8.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
613 |
+
"encoder.layers.8.ls1": "pytorch_model-00001-of-00002.bin",
|
614 |
+
"encoder.layers.8.ls2": "pytorch_model-00001-of-00002.bin",
|
615 |
+
"encoder.layers.8.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
616 |
+
"encoder.layers.8.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
617 |
+
"encoder.layers.8.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
618 |
+
"encoder.layers.8.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
619 |
+
"encoder.layers.8.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
620 |
+
"encoder.layers.8.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
621 |
+
"encoder.layers.9.attn.k_norm.weight": "pytorch_model-00001-of-00002.bin",
|
622 |
+
"encoder.layers.9.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
623 |
+
"encoder.layers.9.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
624 |
+
"encoder.layers.9.attn.q_norm.weight": "pytorch_model-00001-of-00002.bin",
|
625 |
+
"encoder.layers.9.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
626 |
+
"encoder.layers.9.ls1": "pytorch_model-00001-of-00002.bin",
|
627 |
+
"encoder.layers.9.ls2": "pytorch_model-00001-of-00002.bin",
|
628 |
+
"encoder.layers.9.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
629 |
+
"encoder.layers.9.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
630 |
+
"encoder.layers.9.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
631 |
+
"encoder.layers.9.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
632 |
+
"encoder.layers.9.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
633 |
+
"encoder.layers.9.norm2.weight": "pytorch_model-00001-of-00002.bin"
|
634 |
+
}
|
635 |
+
}
|