Video-Text-to-Text
Safetensors
custom_code
ynhe's picture
[init]
75c67a3
import io
import os
import warnings
import logging
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import MSELoss
from torch.cuda.amp import autocast as autocast
from .modeling_internvideo2_vit import pretrain_internvideo2_giant_patch14_224_clean
from .modeling_qformer import build_qformer
logger = logging.getLogger(__name__)
from transformers import LlamaTokenizer,AutoTokenizer,AutoModel,AutoModelForCausalLM,AutoProcessor
from transformers import AutoConfig, PreTrainedModel
from .model_config import VideoChat2Config
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def freeze_module(module):
for _, param in module.named_parameters():
param.requires_grad = False
module = module.eval()
module.train = disabled_train
return module
class LLMConfig(AutoConfig):
model_type = ""
class BaseMLLM(PreTrainedModel):
config_class = VideoChat2Config
def __init__(self, config):
# super().__init__(config)
self.model_config = config.model_config
config.model_config = None
super().__init__(config)
self.build_vision_encoder()
self.build_llm()
self.build_bridge()
self.build_loss()
# NOTE place it after freeze llm
for n, p in self.named_parameters():
if p.requires_grad:
logger.info(f'{n} requires_grad')
def build_vision_encoder(self):
# load pretrained internvideo2-1b here, simplified as it receives no args
# note that we haven't load the internvideo pretrained version
if 'internvideo2' in self.model_config.vision_encoder.name.lower():
encoder_name = self.model_config.vision_encoder.name
logger.info(f"Build vision_encoder: {encoder_name}")
if encoder_name == 'internvideo2-1B':
self.vision_encoder = pretrain_internvideo2_giant_patch14_224_clean(self.model_config)
else:
raise ValueError(f"Not implemented: {encoder_name}")
else:
raise NotImplementedError(self.model_config.vision_encoder.name)
if self.model_config.vision_encoder.vit_add_ln:
self.vision_layernorm = nn.LayerNorm(self.model_config.vision_encoder.encoder_embed_dim, eps=1e-12)
else:
self.vision_layernorm = nn.Identity()
self.freeze_vision_encoder = self.model_config.get("freeze_vision_encoder", False)
if self.freeze_vision_encoder:
logger.info("freeze vision encoder")
freeze_module(self.vision_encoder)
freeze_module(self.vision_layernorm)
def build_bridge(self):
# ViT to LM: 1792 -> 6656 NOTE 768 is qformer dim
self.project_up = nn.Linear(768, self.lm.config.hidden_size) # whether bias is needed?
# LM to ViT: 6656 -> 1792
self.project_down = nn.Linear(self.lm.config.hidden_size, 768)
if 'qformer' in self.model_config.bridge.name.lower():
from transformers import BertTokenizer
self.qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="left")
self.qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"})
self.qformer_tokenizer.padding_side = "left"
if self.model_config.bridge.name == 'qformer':
self.qformer, self.query_tokens = build_qformer(
self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim,
qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob,
qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob,
qformer_drop_path_rate=self.model_config.bridge.qformer_drop_path_rate,
)
self.qformer.resize_token_embeddings(len(self.qformer_tokenizer))
self.qformer.cls = None
self.extra_num_query_token = self.model_config.bridge.extra_num_query_token
if self.model_config.bridge.extra_num_query_token > 0:
logger.info(f"Add extra {self.model_config.bridge.extra_num_query_token} tokens in QFormer")
self.extra_query_tokens = nn.Parameter(
torch.zeros(1, self.model_config.bridge.extra_num_query_token, self.query_tokens.shape[-1])
)
self.freeze_bridge = self.model_config.get("freeze_bridge", False)
if self.freeze_bridge:
logger.info("freeze bridge")
freeze_module(self.qformer)
self.query_tokens.requires_grad = False
def build_llm(self):
self.lm_name = self.model_config.llm.name
if self.model_config.llm.name == 'mistral_7b':
from transformers import AutoModelForCausalLM
config = AutoConfig.from_pretrained(
self.model_config.llm.pretrained_llm_path,
torch_dtype=torch.bfloat16,
token=token,
# attn_implementation="flash_attention_2",
)
self.lm = AutoModelForCausalLM.from_config(config)
elif self.model_config.llm.name == 'internlm_20b':
from transformers import AutoModelForCausalLM
self.lm = AutoModelForCausalLM.from_pretrained(
self.model_config.llm.pretrained_llm_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
self.lm.gradient_checkpointing = True
self.lm._set_gradient_checkpointing()
elif self.model_config.llm.name == 'internlm2_5_7b':
from transformers import AutoModelForCausalLM
config = AutoConfig.from_pretrained(
self.model_config.llm.pretrained_llm_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
self.lm = AutoModelForCausalLM.from_config(config,trust_remote_code=True)
else:
raise NotImplementedError(self.model_config.llm.name)
self.freeze_llm = self.model_config.get("freeze_llm", True)
logger.info(f'freeze_llm: {self.freeze_llm}')
if self.freeze_llm:
logger.info("freeze llm")
freeze_module(self.lm)
if self.model_config.llm.use_lora:
self.use_lora = True
from peft import get_peft_model, LoraConfig, TaskType
logger.info("Use lora")
if "internlm" in self.model_config.llm.name:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False,
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3']
)
else:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False,
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj", "lm_head"]
)
self.lm = get_peft_model(self.lm, peft_config)
self.lm.enable_input_require_grads()
self.lm.print_trainable_parameters()
else:
self.use_lora = False
def build_loss(self):
self.use_vision_regression_loss = self.model_config.loss.get("use_vision_regression_loss", False)
if self.use_vision_regression_loss:
self.image_loss_fct = MSELoss()
@property
def dtype(self):
return self.lm.dtype
@property
def device(self):
return self.lm.device