|
import io |
|
import logging |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import MSELoss |
|
from transformers.modeling_outputs import ( |
|
CausalLMOutputWithPast, |
|
) |
|
from typing import List, Optional, Tuple, Union |
|
from torch.cuda.amp import autocast as autocast |
|
from .modeling_base import BaseMLLM |
|
from .modeling_internvideo2_vit import pretrain_internvideo2_giant_patch14_224_clean, interpolate_pos_embed_internvideo2_new |
|
from .modeling_qformer import build_qformer |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
IMG_TOKEN = "[<IMG_PLH>]" |
|
VID_TOKEN = "[<VID_PLH>]" |
|
|
|
DEFAULT_PAD_TOKEN = "[PAD]" |
|
DEFAULT_BOS_TOKEN = '<s>' |
|
DEFAULT_EOS_TOKEN = '</s>' |
|
DEFAULT_UNK_TOKEN = "<unk>" |
|
|
|
DEFAULT_IMAGE_TOKEN = "[IMAGETOKEN]" |
|
DEFAULT_VIDEO_TOKEN = "[VIDEOTOKEN]" |
|
|
|
DEFAULT_IMG_PLACEHOLDER = "[<IMG_PLH>]" |
|
DEFAULT_VID_PLACEHOLDER = "[<VID_PLH>]" |
|
|
|
class InternVideo2_VideoChat2(BaseMLLM): |
|
|
|
def __init__( |
|
self, |
|
config |
|
): |
|
super().__init__(config=config) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
image: Optional[torch.Tensor] = None, |
|
video: Optional[torch.Tensor] = None, |
|
instruction = None, |
|
video_idx = None, |
|
image_idx = None, |
|
): |
|
if self.use_vision_regression_loss: |
|
text_embeds, visual, visual_idx = self.pad_text_embeds(input_ids=input_ids, image=image,video=video, return_visual=True, video_idx=video_idx, image_idx=image_idx, instruction = instruction) |
|
else: |
|
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, return_visual=False, video_idx=video_idx, image_idx=image_idx, instruction = instruction) |
|
|
|
outputs = self.lm( |
|
inputs_embeds=text_embeds, |
|
attention_mask=attention_mask, |
|
labels=labels, |
|
output_hidden_states=True, |
|
return_dict=True, |
|
) |
|
|
|
return outputs |
|
|
|
def pad_text_embeds( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
image: Optional[torch.Tensor] = None, |
|
video: Optional[torch.Tensor] = None, |
|
image_idx = None, |
|
video_idx = None, |
|
return_visual: bool = False, |
|
instruction = None, |
|
): |
|
|
|
text_embeds = self.lm.get_input_embeddings()(input_ids.long()).detach() |
|
|
|
visual = None |
|
visual_idx = None |
|
|
|
if image is not None: |
|
B, T, C, H, W = image.shape |
|
image = image.permute(0, 2, 1, 3, 4) |
|
prompt_image_embeds = self.encode_vision(image, instruction=instruction) |
|
visual = prompt_image_embeds |
|
prompt_image_embeds = self.project_up(prompt_image_embeds) |
|
prompt_image_embeds = prompt_image_embeds.view(-1, prompt_image_embeds.shape[-1]) |
|
visual_idx = image_idx |
|
text_embeds[image_idx == 1] = text_embeds[image_idx == 1] * 0 + prompt_image_embeds.to(text_embeds.device) |
|
elif video is not None: |
|
if len(video.shape) == 5: |
|
B, T, C, H, W = video.shape |
|
N = 1 |
|
else: |
|
B, N, T, C, H, W = video.shape |
|
video = video.reshape(B*N, T, C, H, W).permute(0, 2, 1, 3, 4) |
|
prompt_video_embeds = self.encode_vision(video, instruction=instruction) |
|
visual = prompt_video_embeds |
|
prompt_video_embeds = self.project_up(prompt_video_embeds) |
|
prompt_video_embeds = prompt_video_embeds.view(-1, prompt_video_embeds.shape[-1]) |
|
visual_idx = video_idx |
|
text_embeds[video_idx == 1] = text_embeds[video_idx == 1] * 0 + prompt_video_embeds.to(text_embeds.device).to(text_embeds.dtype) |
|
else: |
|
logger.warn(f"don't get visual input, input_ids: {input_ids}") |
|
|
|
if return_visual: |
|
return text_embeds, visual, visual_idx |
|
|
|
return text_embeds |
|
|
|
|
|
def encode_vision( |
|
self, |
|
image, |
|
instruction |
|
): |
|
device = image.device |
|
B = image.shape[0] |
|
T = image.shape[2] |
|
use_image = True if T == 1 else False |
|
image_embeds = self.vision_encoder(image, use_image=use_image) |
|
C = image_embeds.shape[-1] |
|
image_embeds = image_embeds.reshape(B, -1, C) |
|
image_embeds = self.vision_layernorm(image_embeds).to(device) |
|
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device) |
|
if self.extra_num_query_token > 0: |
|
query_tokens = torch.cat([self.query_tokens, self.extra_query_tokens], dim=1) |
|
query_tokens = query_tokens.expand(image_embeds.shape[0], -1, -1) |
|
if instruction is not None: |
|
text_Qformer = self.qformer_tokenizer( |
|
instruction, |
|
padding='longest', |
|
truncation=True, |
|
max_length=512, |
|
return_tensors="pt", |
|
).to(image_embeds.device) |
|
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image_embeds.device) |
|
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1) |
|
query_output = self.qformer.bert( |
|
text_Qformer.input_ids, |
|
attention_mask=Qformer_atts, |
|
query_embeds=query_tokens, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_atts, |
|
return_dict=True, |
|
) |
|
else: |
|
query_output = self.qformer.bert( |
|
query_embeds=query_tokens, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_atts, |
|
return_dict=True, |
|
) |
|
|
|
return query_output.last_hidden_state[:, :query_tokens.size(1), :] |
|
|
|
|
|
def generate_caption( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
image_idx = None, |
|
video_idx = None, |
|
image: Optional[torch.Tensor] = None, |
|
video: Optional[torch.Tensor] = None, |
|
num_beams=1, |
|
max_new_tokens=200, |
|
do_sample=True, |
|
top_p=0.9, |
|
top_k=None, |
|
temperature=1.0, |
|
length_penalty=1, |
|
repetition_penalty=1.0, |
|
instruction=None |
|
): |
|
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, image_idx=image_idx, video_idx=video_idx,instruction=instruction) |
|
outputs = self.lm.generate( |
|
inputs_embeds=text_embeds, |
|
attention_mask=attention_mask, |
|
num_beams=num_beams, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
min_length=1, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
length_penalty=length_penalty, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
|
|
return outputs |
|
|
|
def build_input_ids( |
|
self, |
|
tokenizer, |
|
conversation, |
|
max_length, |
|
add_special_tokens, |
|
truncation, |
|
image = None, |
|
video = None, |
|
padding = "longest", |
|
return_tensors = "pt", |
|
image_placeholder: str = DEFAULT_IMG_PLACEHOLDER, |
|
video_placeholder: str = DEFAULT_VID_PLACEHOLDER, |
|
): |
|
input_ids = [] |
|
indexs = [] |
|
attention_mask = [] |
|
start, total_len = 0, 0 |
|
while True: |
|
index1 = conversation.find(image_placeholder, start) |
|
index2 = conversation.find(video_placeholder, start) |
|
if index1 == -1 and index2 == -1: |
|
index = -1 |
|
elif index1 == -1: |
|
index = index2 |
|
elif index2 == -1: |
|
index = index1 |
|
else: |
|
index = min(index1, index2) |
|
assert index != -1 |
|
if index == -1: |
|
inputs = tokenizer(conversation[start:], max_length=max_length-total_len, truncation=truncation, padding=padding, return_tensors=return_tensors) |
|
else: |
|
inputs = tokenizer(conversation[start:index], max_length=max_length, truncation=truncation, padding='longest', return_tensors=return_tensors) |
|
|
|
input_ids += inputs.input_ids |
|
attention_mask += inputs.attention_mask |
|
total_len += inputs.input_ids[0].shape[0] |
|
indexs += torch.zeros_like(inputs.input_ids) |
|
|
|
if index != -1: |
|
input_ids += [torch.zeros(96).long()] |
|
attention_mask += [torch.ones(96).long()] |
|
indexs += [torch.ones(96)] |
|
|
|
if index == -1: |
|
return { |
|
'input_ids': torch.cat(input_ids), |
|
'attention_mask': torch.cat(attention_mask), |
|
'index': torch.cat(indexs).to(torch.bool), |
|
} |
|
start = index + len(DEFAULT_IMG_PLACEHOLDER) |
|
|
|
def chat( |
|
self, |
|
tokenizer, |
|
msg, |
|
user_prompt, |
|
media_type, |
|
media_tensor, |
|
instruction=None, |
|
chat_history =[], |
|
return_history =False, |
|
generation_config={} |
|
): |
|
|
|
|
|
conversation = "" |
|
if instruction: |
|
cur_instruction = "<|im_start|>system\n" + instruction+ "<|im_end|>\n" |
|
conversation += cur_instruction |
|
conversation += ( |
|
"<|im_start|>user\n" |
|
) |
|
|
|
if media_type == 'image': |
|
ilen = media_tensor.shape[0] |
|
conversation +=( "<img>" + IMG_TOKEN + "</img>")*ilen |
|
else: |
|
ilen = media_tensor.shape[1] |
|
conversation += ("<vid>" + VID_TOKEN + "</vid>")*ilen |
|
|
|
|
|
conversation += ( |
|
msg.rstrip() + "<|im_end|>\n" |
|
) |
|
|
|
for q,a in chat_history: |
|
conversation += ("<|im_start|>user\n" + q + "<|im_end|>\n") |
|
conversation += ("<|im_start|>assistant\n" + a + "<|im_end|>\n" + '</s>') |
|
|
|
conversation += ("<|im_start|>user\n" + user_prompt + "<|im_end|>\n") |
|
conversation += ("") |
|
|
|
|
|
total_len = 0 |
|
indexs = [] |
|
tokenized = self.build_input_ids( |
|
tokenizer, |
|
conversation, |
|
max_length=248, |
|
add_special_tokens=True, |
|
truncation=False, |
|
padding=False, |
|
return_tensors='pt' |
|
) |
|
if media_type == 'image': |
|
generation_output = self.generate_caption( |
|
tokenized['input_ids'].unsqueeze(0).to(self.device), |
|
tokenized['attention_mask'].unsqueeze(0).to(self.device), |
|
image_idx = tokenized['index'].unsqueeze(0), |
|
image = media_tensor, |
|
instruction=[instruction]* ilen if instruction else None, |
|
**generation_config) |
|
else: |
|
generation_output = self.generate_caption( |
|
tokenized['input_ids'].unsqueeze(0).to(self.device), |
|
tokenized['attention_mask'].unsqueeze(0).to(self.device), |
|
video_idx = tokenized['index'].unsqueeze(0), |
|
video = media_tensor, |
|
instruction=[instruction]* ilen if instruction else None, |
|
**generation_config) |
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] |
|
if return_history: |
|
chat_history.append((user_prompt,response)) |
|
return response, chat_history |
|
return response |