File size: 13,648 Bytes
cb0dd3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
#!/usr/bin/env python
import os
import logging
from collections import OrderedDict

import torch
from torch import nn
from einops import rearrange
from timm.models.layers import DropPath
from timm.models.registry import register_model

import torch.utils.checkpoint as checkpoint

# from models.utils import load_temp_embed_with_mismatch

logger = logging.getLogger(__name__)

def load_temp_embed_with_mismatch(temp_embed_old, temp_embed_new, add_zero=True):
    """
    Add/Remove extra temporal_embeddings as needed.
    https://arxiv.org/abs/2104.00650 shows adding zero paddings works.

    temp_embed_old: (1, num_frames_old, 1, d)
    temp_embed_new: (1, num_frames_new, 1, d)
    add_zero: bool, if True, add zero, else, interpolate trained embeddings.
    """
    # TODO zero pad
    num_frms_new = temp_embed_new.shape[1]
    num_frms_old = temp_embed_old.shape[1]
    logger.info(f"Load temporal_embeddings, lengths: {num_frms_old}-->{num_frms_new}")
    if num_frms_new > num_frms_old:
        if add_zero:
            temp_embed_new[
                :, :num_frms_old
            ] = temp_embed_old  # untrained embeddings are zeros.
        else:
            temp_embed_new = interpolate_temporal_pos_embed(temp_embed_old, num_frms_new)
    elif num_frms_new < num_frms_old:
        temp_embed_new = temp_embed_old[:, :num_frms_new]
    else:  # =
        temp_embed_new = temp_embed_old
    return temp_embed_new


# On P1, model extracted from https://huggingface.co/laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K
MODEL_PATH = ''
_MODELS = {
    "ViT-L/14": os.path.join(MODEL_PATH, "ViCLIP-L_InternVid-FLT-10M.pth"),
    "ViT-B/16": os.path.join(MODEL_PATH, "ViCLIP-B-InternVid-FLT-10M.pth"),
}


class QuickGELU(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model, n_head, drop_path=0., attn_mask=None, dropout=0.):
        super().__init__()

        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        # logger.info(f'Droppath: {drop_path}')
        self.attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout)
        self.ln_1 = nn.LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("drop1", nn.Dropout(dropout)),
            ("c_proj", nn.Linear(d_model * 4, d_model)),
            ("drop2", nn.Dropout(dropout)),
        ]))
        self.ln_2 = nn.LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x):
        x = x + self.drop_path1(self.attention(self.ln_1(x)))
        x = x + self.drop_path2(self.mlp(self.ln_2(x)))
        return x


class Transformer(nn.Module):
    def __init__(self, width, layers, heads, drop_path=0., checkpoint_num=0, dropout=0.):
        super().__init__()
        dpr = [x.item() for x in torch.linspace(0, drop_path, layers)]
        self.resblocks = nn.ModuleList()
        for idx in range(layers):
            self.resblocks.append(ResidualAttentionBlock(width, heads, drop_path=dpr[idx], dropout=dropout))
        self.checkpoint_num = checkpoint_num

    def forward(self, x):
        for idx, blk in enumerate(self.resblocks):
            if idx < self.checkpoint_num:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        return x


class VisionTransformer(nn.Module):
    def __init__(
        self, input_resolution, patch_size, width, layers, heads, output_dim=None, 
        kernel_size=1, num_frames=8, drop_path=0, checkpoint_num=0, dropout=0.,
        temp_embed=True,
    ):
        super().__init__()
        self.output_dim = output_dim
        self.conv1 = nn.Conv3d(
            3, width, 
            (kernel_size, patch_size, patch_size), 
            (kernel_size, patch_size, patch_size), 
            (0, 0, 0), bias=False
        )

        scale = width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
        self.ln_pre = nn.LayerNorm(width)
        if temp_embed:
            self.temporal_positional_embedding = nn.Parameter(torch.zeros(1, num_frames, width))
        
        self.transformer = Transformer(
            width, layers, heads, drop_path=drop_path, checkpoint_num=checkpoint_num,
            dropout=dropout)

        self.ln_post = nn.LayerNorm(width)
        if output_dim is not None:
            self.proj = nn.Parameter(torch.empty(width, output_dim))
        else:
            self.proj = None
        
        self.dropout = nn.Dropout(dropout)

    def get_num_layers(self):
        return len(self.transformer.resblocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'positional_embedding', 'class_embedding', 'temporal_positional_embedding'}
    
    def mask_tokens(self, inputs, masking_prob=0.0):
        B, L, _ = inputs.shape

        # This is different from text as we are masking a fix number of tokens
        Lm = int(masking_prob * L)
        masked_indices = torch.zeros(B, L)
        indices = torch.argsort(torch.rand_like(masked_indices), dim=-1)[:, :Lm]
        batch_indices = (
            torch.arange(masked_indices.shape[0]).unsqueeze(-1).expand_as(indices)
        )
        masked_indices[batch_indices, indices] = 1

        masked_indices = masked_indices.bool()

        return inputs[~masked_indices].reshape(B, -1, inputs.shape[-1])

    def forward(self, x, masking_prob=0.0):
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        B, C, T, H, W = x.shape
        x = x.permute(0, 2, 3, 4, 1).reshape(B * T, H * W, C)

        x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)  # shape = [*, grid ** 2 + 1, width]
        x = x + self.positional_embedding.to(x.dtype)

        # temporal pos
        cls_tokens = x[:B, :1, :]
        x = x[:, 1:]
        x = rearrange(x, '(b t) n m -> (b n) t m', b=B, t=T)
        if hasattr(self, 'temporal_positional_embedding'):
            if x.size(1) == 1:
                # This is a workaround for unused parameter issue
                x = x + self.temporal_positional_embedding.mean(1)
            else:
                x = x + self.temporal_positional_embedding
        x = rearrange(x, '(b n) t m -> b (n t) m', b=B, t=T)

        if masking_prob > 0.0:
            x = self.mask_tokens(x, masking_prob)

        x = torch.cat((cls_tokens, x), dim=1)

        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  #BND -> NBD
        x = self.transformer(x)

        x = self.ln_post(x)

        if self.proj is not None:
            x = self.dropout(x[0]) @ self.proj
        else:
            x = x.permute(1, 0, 2)  #NBD -> BND

        return x


def inflate_weight(weight_2d, time_dim, center=True):
    logger.info(f'Init center: {center}')
    if center:
        weight_3d = torch.zeros(*weight_2d.shape)
        weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
        middle_idx = time_dim // 2
        weight_3d[:, :, middle_idx, :, :] = weight_2d
    else:
        weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
        weight_3d = weight_3d / time_dim
    return weight_3d


def load_state_dict(model, state_dict, input_resolution=224, patch_size=16, center=True):
    state_dict_3d = model.state_dict()
    for k in state_dict.keys():
        if k in state_dict_3d.keys() and state_dict[k].shape != state_dict_3d[k].shape:
            if len(state_dict_3d[k].shape) <= 2:
                logger.info(f'Ignore: {k}')
                continue
            logger.info(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}')
            time_dim = state_dict_3d[k].shape[2]
            state_dict[k] = inflate_weight(state_dict[k], time_dim, center=center)

    pos_embed_checkpoint = state_dict['positional_embedding']
    embedding_size = pos_embed_checkpoint.shape[-1]
    num_patches = (input_resolution // patch_size) ** 2
    orig_size = int((pos_embed_checkpoint.shape[-2] - 1) ** 0.5)
    new_size = int(num_patches ** 0.5)
    if orig_size != new_size:
        logger.info(f'Pos_emb from {orig_size} to {new_size}')
        extra_tokens = pos_embed_checkpoint[:1]
        pos_tokens = pos_embed_checkpoint[1:]
        pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
        pos_tokens = torch.nn.functional.interpolate(
            pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(0, 2)
        new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=0)
        state_dict['positional_embedding'] = new_pos_embed
    
    message = model.load_state_dict(state_dict, strict=False)
    logger.info(f"Load pretrained weights: {message}")


@register_model
def clip_joint_b16(
    pretrained=False, input_resolution=224, kernel_size=1,
    center=True, num_frames=8, drop_path=0., checkpoint_num=0,
    dropout=0.,
):
    model = VisionTransformer(
        input_resolution=input_resolution, patch_size=16, 
        width=768, layers=12, heads=12, output_dim=512,
        kernel_size=kernel_size, num_frames=num_frames, 
        drop_path=drop_path, checkpoint_num=checkpoint_num,
        dropout=dropout,
    )
    # raise NotImplementedError
    if pretrained:
        if isinstance(pretrained, str):
            model_name = pretrained
        else:
            model_name = "ViT-B/16"
        
        logger.info('load pretrained weights')
        state_dict = torch.load(_MODELS[model_name], map_location='cpu')
        load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=16, center=center)
    return model.eval()


@register_model
def clip_joint_l14(
    pretrained=False, input_resolution=224, kernel_size=1,
    center=True, num_frames=8, drop_path=0., checkpoint_num=0,
    dropout=0.,
):
    model = VisionTransformer(
        input_resolution=input_resolution, patch_size=14,
        width=1024, layers=24, heads=16, output_dim=768,
        kernel_size=kernel_size, num_frames=num_frames, 
        drop_path=drop_path, checkpoint_num=checkpoint_num,
        dropout=dropout,
    )
    
    if pretrained:
        if isinstance(pretrained, str):
            model_name = pretrained
        else:
            model_name = "ViT-L/14"
        logger.info('load pretrained weights')
        state_dict = torch.load(_MODELS[model_name], map_location='cpu')
        load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=14, center=center)
    return model.eval()


@register_model
def clip_joint_l14_336(
    pretrained=True, input_resolution=336, kernel_size=1,
    center=True, num_frames=8, drop_path=0.
):
    raise NotImplementedError
    model = VisionTransformer(
        input_resolution=input_resolution, patch_size=14, 
        width=1024, layers=24, heads=16, output_dim=768,
        kernel_size=kernel_size, num_frames=num_frames,
        drop_path=drop_path,
    )
    if pretrained:
        logger.info('load pretrained weights')
        state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu')
        load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=14, center=center)
    return model.eval()


def interpolate_pos_embed_vit(state_dict, new_model):
    key = "vision_encoder.temporal_positional_embedding"
    if key in state_dict:
        vision_temp_embed_new = new_model.state_dict()[key]
        vision_temp_embed_new = vision_temp_embed_new.unsqueeze(2)  # [1, n, d] -> [1, n, 1, d]
        vision_temp_embed_old = state_dict[key]
        vision_temp_embed_old = vision_temp_embed_old.unsqueeze(2)

        state_dict[key] = load_temp_embed_with_mismatch(
            vision_temp_embed_old, vision_temp_embed_new, add_zero=False
        ).squeeze(2)

    key = "text_encoder.positional_embedding"
    if key in state_dict:
        text_temp_embed_new = new_model.state_dict()[key]
        text_temp_embed_new = text_temp_embed_new.unsqueeze(0).unsqueeze(2)  # [n, d] -> [1, n, 1, d]
        text_temp_embed_old = state_dict[key]
        text_temp_embed_old = text_temp_embed_old.unsqueeze(0).unsqueeze(2)

        state_dict[key] = load_temp_embed_with_mismatch(
            text_temp_embed_old, text_temp_embed_new, add_zero=False
        ).squeeze(2).squeeze(0)
    return state_dict


if __name__ == '__main__':
    import time
    from fvcore.nn import FlopCountAnalysis
    from fvcore.nn import flop_count_table
    import numpy as np

    seed = 4217
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    num_frames = 8

    # model = clip_joint_b16(pretrained=True, kernel_size=1, num_frames=8, num_classes=400, drop_path=0.1)
    # logger.info(model)
    model = clip_joint_l14(pretrained=False)

    flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224))
    s = time.time()
    logger.info(flop_count_table(flops, max_depth=1))
    logger.info(time.time()-s)
    # logger.info(model(torch.rand(1, 3, num_frames, 224, 224)).shape)