File size: 13,648 Bytes
cb0dd3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
#!/usr/bin/env python
import os
import logging
from collections import OrderedDict
import torch
from torch import nn
from einops import rearrange
from timm.models.layers import DropPath
from timm.models.registry import register_model
import torch.utils.checkpoint as checkpoint
# from models.utils import load_temp_embed_with_mismatch
logger = logging.getLogger(__name__)
def load_temp_embed_with_mismatch(temp_embed_old, temp_embed_new, add_zero=True):
"""
Add/Remove extra temporal_embeddings as needed.
https://arxiv.org/abs/2104.00650 shows adding zero paddings works.
temp_embed_old: (1, num_frames_old, 1, d)
temp_embed_new: (1, num_frames_new, 1, d)
add_zero: bool, if True, add zero, else, interpolate trained embeddings.
"""
# TODO zero pad
num_frms_new = temp_embed_new.shape[1]
num_frms_old = temp_embed_old.shape[1]
logger.info(f"Load temporal_embeddings, lengths: {num_frms_old}-->{num_frms_new}")
if num_frms_new > num_frms_old:
if add_zero:
temp_embed_new[
:, :num_frms_old
] = temp_embed_old # untrained embeddings are zeros.
else:
temp_embed_new = interpolate_temporal_pos_embed(temp_embed_old, num_frms_new)
elif num_frms_new < num_frms_old:
temp_embed_new = temp_embed_old[:, :num_frms_new]
else: # =
temp_embed_new = temp_embed_old
return temp_embed_new
# On P1, model extracted from https://huggingface.co/laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K
MODEL_PATH = ''
_MODELS = {
"ViT-L/14": os.path.join(MODEL_PATH, "ViCLIP-L_InternVid-FLT-10M.pth"),
"ViT-B/16": os.path.join(MODEL_PATH, "ViCLIP-B-InternVid-FLT-10M.pth"),
}
class QuickGELU(nn.Module):
def forward(self, x):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model, n_head, drop_path=0., attn_mask=None, dropout=0.):
super().__init__()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# logger.info(f'Droppath: {drop_path}')
self.attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout)
self.ln_1 = nn.LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("drop1", nn.Dropout(dropout)),
("c_proj", nn.Linear(d_model * 4, d_model)),
("drop2", nn.Dropout(dropout)),
]))
self.ln_2 = nn.LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x):
x = x + self.drop_path1(self.attention(self.ln_1(x)))
x = x + self.drop_path2(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(self, width, layers, heads, drop_path=0., checkpoint_num=0, dropout=0.):
super().__init__()
dpr = [x.item() for x in torch.linspace(0, drop_path, layers)]
self.resblocks = nn.ModuleList()
for idx in range(layers):
self.resblocks.append(ResidualAttentionBlock(width, heads, drop_path=dpr[idx], dropout=dropout))
self.checkpoint_num = checkpoint_num
def forward(self, x):
for idx, blk in enumerate(self.resblocks):
if idx < self.checkpoint_num:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
return x
class VisionTransformer(nn.Module):
def __init__(
self, input_resolution, patch_size, width, layers, heads, output_dim=None,
kernel_size=1, num_frames=8, drop_path=0, checkpoint_num=0, dropout=0.,
temp_embed=True,
):
super().__init__()
self.output_dim = output_dim
self.conv1 = nn.Conv3d(
3, width,
(kernel_size, patch_size, patch_size),
(kernel_size, patch_size, patch_size),
(0, 0, 0), bias=False
)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = nn.LayerNorm(width)
if temp_embed:
self.temporal_positional_embedding = nn.Parameter(torch.zeros(1, num_frames, width))
self.transformer = Transformer(
width, layers, heads, drop_path=drop_path, checkpoint_num=checkpoint_num,
dropout=dropout)
self.ln_post = nn.LayerNorm(width)
if output_dim is not None:
self.proj = nn.Parameter(torch.empty(width, output_dim))
else:
self.proj = None
self.dropout = nn.Dropout(dropout)
def get_num_layers(self):
return len(self.transformer.resblocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'positional_embedding', 'class_embedding', 'temporal_positional_embedding'}
def mask_tokens(self, inputs, masking_prob=0.0):
B, L, _ = inputs.shape
# This is different from text as we are masking a fix number of tokens
Lm = int(masking_prob * L)
masked_indices = torch.zeros(B, L)
indices = torch.argsort(torch.rand_like(masked_indices), dim=-1)[:, :Lm]
batch_indices = (
torch.arange(masked_indices.shape[0]).unsqueeze(-1).expand_as(indices)
)
masked_indices[batch_indices, indices] = 1
masked_indices = masked_indices.bool()
return inputs[~masked_indices].reshape(B, -1, inputs.shape[-1])
def forward(self, x, masking_prob=0.0):
x = self.conv1(x) # shape = [*, width, grid, grid]
B, C, T, H, W = x.shape
x = x.permute(0, 2, 3, 4, 1).reshape(B * T, H * W, C)
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
# temporal pos
cls_tokens = x[:B, :1, :]
x = x[:, 1:]
x = rearrange(x, '(b t) n m -> (b n) t m', b=B, t=T)
if hasattr(self, 'temporal_positional_embedding'):
if x.size(1) == 1:
# This is a workaround for unused parameter issue
x = x + self.temporal_positional_embedding.mean(1)
else:
x = x + self.temporal_positional_embedding
x = rearrange(x, '(b n) t m -> b (n t) m', b=B, t=T)
if masking_prob > 0.0:
x = self.mask_tokens(x, masking_prob)
x = torch.cat((cls_tokens, x), dim=1)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) #BND -> NBD
x = self.transformer(x)
x = self.ln_post(x)
if self.proj is not None:
x = self.dropout(x[0]) @ self.proj
else:
x = x.permute(1, 0, 2) #NBD -> BND
return x
def inflate_weight(weight_2d, time_dim, center=True):
logger.info(f'Init center: {center}')
if center:
weight_3d = torch.zeros(*weight_2d.shape)
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
middle_idx = time_dim // 2
weight_3d[:, :, middle_idx, :, :] = weight_2d
else:
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
weight_3d = weight_3d / time_dim
return weight_3d
def load_state_dict(model, state_dict, input_resolution=224, patch_size=16, center=True):
state_dict_3d = model.state_dict()
for k in state_dict.keys():
if k in state_dict_3d.keys() and state_dict[k].shape != state_dict_3d[k].shape:
if len(state_dict_3d[k].shape) <= 2:
logger.info(f'Ignore: {k}')
continue
logger.info(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}')
time_dim = state_dict_3d[k].shape[2]
state_dict[k] = inflate_weight(state_dict[k], time_dim, center=center)
pos_embed_checkpoint = state_dict['positional_embedding']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = (input_resolution // patch_size) ** 2
orig_size = int((pos_embed_checkpoint.shape[-2] - 1) ** 0.5)
new_size = int(num_patches ** 0.5)
if orig_size != new_size:
logger.info(f'Pos_emb from {orig_size} to {new_size}')
extra_tokens = pos_embed_checkpoint[:1]
pos_tokens = pos_embed_checkpoint[1:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(0, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=0)
state_dict['positional_embedding'] = new_pos_embed
message = model.load_state_dict(state_dict, strict=False)
logger.info(f"Load pretrained weights: {message}")
@register_model
def clip_joint_b16(
pretrained=False, input_resolution=224, kernel_size=1,
center=True, num_frames=8, drop_path=0., checkpoint_num=0,
dropout=0.,
):
model = VisionTransformer(
input_resolution=input_resolution, patch_size=16,
width=768, layers=12, heads=12, output_dim=512,
kernel_size=kernel_size, num_frames=num_frames,
drop_path=drop_path, checkpoint_num=checkpoint_num,
dropout=dropout,
)
# raise NotImplementedError
if pretrained:
if isinstance(pretrained, str):
model_name = pretrained
else:
model_name = "ViT-B/16"
logger.info('load pretrained weights')
state_dict = torch.load(_MODELS[model_name], map_location='cpu')
load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=16, center=center)
return model.eval()
@register_model
def clip_joint_l14(
pretrained=False, input_resolution=224, kernel_size=1,
center=True, num_frames=8, drop_path=0., checkpoint_num=0,
dropout=0.,
):
model = VisionTransformer(
input_resolution=input_resolution, patch_size=14,
width=1024, layers=24, heads=16, output_dim=768,
kernel_size=kernel_size, num_frames=num_frames,
drop_path=drop_path, checkpoint_num=checkpoint_num,
dropout=dropout,
)
if pretrained:
if isinstance(pretrained, str):
model_name = pretrained
else:
model_name = "ViT-L/14"
logger.info('load pretrained weights')
state_dict = torch.load(_MODELS[model_name], map_location='cpu')
load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=14, center=center)
return model.eval()
@register_model
def clip_joint_l14_336(
pretrained=True, input_resolution=336, kernel_size=1,
center=True, num_frames=8, drop_path=0.
):
raise NotImplementedError
model = VisionTransformer(
input_resolution=input_resolution, patch_size=14,
width=1024, layers=24, heads=16, output_dim=768,
kernel_size=kernel_size, num_frames=num_frames,
drop_path=drop_path,
)
if pretrained:
logger.info('load pretrained weights')
state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu')
load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=14, center=center)
return model.eval()
def interpolate_pos_embed_vit(state_dict, new_model):
key = "vision_encoder.temporal_positional_embedding"
if key in state_dict:
vision_temp_embed_new = new_model.state_dict()[key]
vision_temp_embed_new = vision_temp_embed_new.unsqueeze(2) # [1, n, d] -> [1, n, 1, d]
vision_temp_embed_old = state_dict[key]
vision_temp_embed_old = vision_temp_embed_old.unsqueeze(2)
state_dict[key] = load_temp_embed_with_mismatch(
vision_temp_embed_old, vision_temp_embed_new, add_zero=False
).squeeze(2)
key = "text_encoder.positional_embedding"
if key in state_dict:
text_temp_embed_new = new_model.state_dict()[key]
text_temp_embed_new = text_temp_embed_new.unsqueeze(0).unsqueeze(2) # [n, d] -> [1, n, 1, d]
text_temp_embed_old = state_dict[key]
text_temp_embed_old = text_temp_embed_old.unsqueeze(0).unsqueeze(2)
state_dict[key] = load_temp_embed_with_mismatch(
text_temp_embed_old, text_temp_embed_new, add_zero=False
).squeeze(2).squeeze(0)
return state_dict
if __name__ == '__main__':
import time
from fvcore.nn import FlopCountAnalysis
from fvcore.nn import flop_count_table
import numpy as np
seed = 4217
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
num_frames = 8
# model = clip_joint_b16(pretrained=True, kernel_size=1, num_frames=8, num_classes=400, drop_path=0.1)
# logger.info(model)
model = clip_joint_l14(pretrained=False)
flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224))
s = time.time()
logger.info(flop_count_table(flops, max_depth=1))
logger.info(time.time()-s)
# logger.info(model(torch.rand(1, 3, num_frames, 224, 224)).shape)
|