mihaimasala commited on
Commit
e4f310b
·
verified ·
1 Parent(s): 232c059

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -33
README.md CHANGED
@@ -4,8 +4,16 @@ language:
4
  - ro
5
  base_model:
6
  - google/gemma-7b
 
 
 
 
 
 
 
 
7
  model-index:
8
- - name: OpenLLM-Ro/RoGemma-7b-Instruct
9
  results:
10
  - task:
11
  type: text-generation
@@ -331,13 +339,13 @@ model-index:
331
  name: OpenLLM-Ro/ro_gsm8k
332
  type: OpenLLM-Ro/ro_gsm8k
333
  metrics:
334
- - name: 0-shot
335
  type: accuracy
336
  value: 24.79
337
- - name: 1-shot
338
  type: accuracy
339
  value: 34.50
340
- - name: 3-shot
341
  type: accuracy
342
  value: 33.89
343
  - task:
@@ -451,41 +459,34 @@ model-index:
451
  - task:
452
  type: text-generation
453
  dataset:
454
- name: STS
455
- type: STS
456
  metrics:
457
- - name: 0-shot
458
  type: spearman
459
  value: 70.61
460
- - name: 1-shot
461
  type: spearman
462
  value: 73.53
463
- - name: 3-shot
464
  type: spearman
465
  value: 77.73
466
  - task:
467
  type: text-generation
468
  dataset:
469
- name: STS
470
- type: STS
471
  metrics:
472
- - name: 0-shot
473
  type: pearson
474
  value: 72.28
475
- - name: 1-shot
476
  type: pearson
477
  value: 74.46
478
- - name: 3-shot
479
  type: pearson
480
  value: 78.75
481
- datasets:
482
- - OpenLLM-Ro/ro_sft_alpaca
483
- - OpenLLM-Ro/ro_sft_alpaca_gpt4
484
- - OpenLLM-Ro/ro_sft_dolly
485
- - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
486
- - OpenLLM-Ro/ro_sft_norobots
487
- - OpenLLM-Ro/ro_sft_orca
488
- - OpenLLM-Ro/ro_sft_camel
489
  ---
490
 
491
  # Model Card for Model ID
@@ -540,8 +541,8 @@ Use the code below to get started with the model.
540
  ```python
541
  from transformers import AutoTokenizer, AutoModelForCausalLM
542
 
543
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct")
544
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct")
545
 
546
  instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
547
  chat = [
@@ -572,11 +573,18 @@ print(tokenizer.decode(outputs[0]))
572
  <td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
573
  </tr>
574
  <tr>
575
- <td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>53.41</strong></em></center></td><td><center><em><strong>52.44</strong></em></center></td><td><center><em><strong>54.44</strong></em></center></td><td><center><em><strong>69.36</strong></em></center></td><td><center><em><strong>61.96</strong></em></center></td><td><center><em><strong>31.06</strong></em></center></td><td><center><em><strong>51.23</strong></em></center></td>
 
 
 
 
 
 
576
  </tr>
577
  </tbody>
578
  </table>
579
 
 
580
  ## Downstream tasks
581
 
582
  <table>
@@ -608,13 +616,18 @@ print(tokenizer.decode(outputs[0]))
608
  <td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td>
609
  </tr>
610
  <tr>
611
- <td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>97.86</strong></em></center></td><td><center><em><strong>65.70</strong></em></center></td><td><center><em><strong>98.43</strong></em></center></td><td><center><em><strong>87.17</strong></em></center></td><td><center><em><strong>27.91</strong></em></center></td><td><center><em>23.08</em></center></td><td><center><em><strong>27.99</strong></em></center></td><td><center><em><strong>39.51</strong></em></center></td>
 
 
 
 
 
 
612
  </tr>
613
  </tbody>
614
  </table>
615
 
616
 
617
-
618
  <table>
619
  <tbody>
620
  <tr>
@@ -644,7 +657,13 @@ print(tokenizer.decode(outputs[0]))
644
  <td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td>
645
  </tr>
646
  <tr>
647
- <td><em>RoGemma-7b-Instruct</em></td><td><center><em>17.75</em></center></td><td><center><em>28.11</em></center></td><td><center><em>52.02</em></center></td><td><center><em>68.43</em></center></td><td><center><em><strong>73.96</strong></em></center></td><td><center><em><strong>75.16</strong></em></center></td><td><center><em><strong>86.45</strong></em></center></td><td><center><em><strong>86.31</strong></em></center></td>
 
 
 
 
 
 
648
  </tr>
649
  </tbody>
650
  </table>
@@ -665,11 +684,18 @@ print(tokenizer.decode(outputs[0]))
665
  <td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td>
666
  </tr>
667
  <tr>
668
- <td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>5.26</strong></em></center></td><td><center><em><strong>5.92</strong></em></center></td><td><center><em><strong>4.60</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
 
 
 
 
 
 
669
  </tr>
670
  </tbody>
671
  </table>
672
 
 
673
  ## RoCulturaBench
674
 
675
  <table>
@@ -680,20 +706,27 @@ print(tokenizer.decode(outputs[0]))
680
  <td><strong><center>Answers in Ro</center></strong></td>
681
  </tr>
682
  <tr>
683
- <td>gemma-1.1-7b-it</td><td><center><strong>3.38</strong></center></td><td><center><strong>100/100</strong></center></td>
 
 
 
684
  </tr>
685
  <tr>
686
- <td><em>RoGemma-7b-Instruct</em></td><td><center><em>3.26</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
 
 
 
687
  </tr>
688
  </tbody>
689
  </table>
690
 
691
-
692
  ## RoGemma Model Family
693
 
694
  | Model | Link |
695
  |--------------------|:--------:|
696
- |*RoGemma-7b-Instruct*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct) |
 
 
697
 
698
 
699
  ## Citation
 
4
  - ro
5
  base_model:
6
  - google/gemma-7b
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
  model-index:
16
+ - name: OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28
17
  results:
18
  - task:
19
  type: text-generation
 
339
  name: OpenLLM-Ro/ro_gsm8k
340
  type: OpenLLM-Ro/ro_gsm8k
341
  metrics:
342
+ - name: 1-shot
343
  type: accuracy
344
  value: 24.79
345
+ - name: 3-shot
346
  type: accuracy
347
  value: 34.50
348
+ - name: 5-shot
349
  type: accuracy
350
  value: 33.89
351
  - task:
 
459
  - task:
460
  type: text-generation
461
  dataset:
462
+ name: STS_Spearman
463
+ type: STS_Spearman
464
  metrics:
465
+ - name: 1-shot
466
  type: spearman
467
  value: 70.61
468
+ - name: 3-shot
469
  type: spearman
470
  value: 73.53
471
+ - name: 5-shot
472
  type: spearman
473
  value: 77.73
474
  - task:
475
  type: text-generation
476
  dataset:
477
+ name: STS_Pearson
478
+ type: STS_Pearson
479
  metrics:
480
+ - name: 1-shot
481
  type: pearson
482
  value: 72.28
483
+ - name: 3-shot
484
  type: pearson
485
  value: 74.46
486
+ - name: 5-shot
487
  type: pearson
488
  value: 78.75
489
+
 
 
 
 
 
 
 
490
  ---
491
 
492
  # Model Card for Model ID
 
541
  ```python
542
  from transformers import AutoTokenizer, AutoModelForCausalLM
543
 
544
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28")
545
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28")
546
 
547
  instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
548
  chat = [
 
573
  <td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
574
  </tr>
575
  <tr>
576
+ <td><em>RoGemma-7b-Instruct-2024-06-28</em></td><td><center><em><strong>53.41</strong></em></center></td><td><center><em><strong>52.44</strong></em></center></td><td><center><em>54.44</em></center></td><td><center><em><strong>69.36</strong></em></center></td><td><center><em><strong>61.96</strong></em></center></td><td><center><em>31.06</em></center></td><td><center><em><strong>51.23</strong></em></center></td>
577
+ </tr>
578
+ <tr>
579
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>50.48</center></td><td><center>52.01</center></td><td><center>52.37</center></td><td><center>66.97</center></td><td><center>56.34</center></td><td><center>25.98</center></td><td><center>49.18</center></td>
580
+ </tr>
581
+ <tr>
582
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>48.27</center></td><td><center>46.66</center></td><td><center><strong>54.45</strong></center></td><td><center>63.73</center></td><td><center>49.33</center></td><td><center><strong>34.98</strong></center></td><td><center>40.45</center></td>
583
  </tr>
584
  </tbody>
585
  </table>
586
 
587
+
588
  ## Downstream tasks
589
 
590
  <table>
 
616
  <td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td>
617
  </tr>
618
  <tr>
619
+ <td><em>RoGemma-7b-Instruct-2024-06-28</em></td><td><center><em><strong>97.86</strong></em></center></td><td><center><em><strong>65.70</strong></em></center></td><td><center><em>98.43</em></center></td><td><center><em><strong>87.17</strong></em></center></td><td><center><em><strong>27.91</strong></em></center></td><td><center><em>23.08</em></center></td><td><center><em><strong>27.99</strong></em></center></td><td><center><em><strong>39.51</strong></em></center></td>
620
+ </tr>
621
+ <tr>
622
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>86.96</center></td><td><center>56.72</center></td><td><center><strong>98.80</strong></center></td><td><center>85.81</center></td><td><center>24.45</center></td><td><center>14.20</center></td><td><center>25.96</center></td><td><center>39.07</center></td>
623
+ </tr>
624
+ <tr>
625
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>96.45</center></td><td><center>63.23</center></td><td><center>-</center></td><td><center>-</center></td><td><center>20.73</center></td><td><center>7.87</center></td><td><center>-</center></td><td><center>-</center></td>
626
  </tr>
627
  </tbody>
628
  </table>
629
 
630
 
 
631
  <table>
632
  <tbody>
633
  <tr>
 
657
  <td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td>
658
  </tr>
659
  <tr>
660
+ <td><em>RoGemma-7b-Instruct-2024-06-28</em></td><td><center><em>17.75</em></center></td><td><center><em>28.11</em></center></td><td><center><em>52.02</em></center></td><td><center><em>68.43</em></center></td><td><center><em><strong>73.96</strong></em></center></td><td><center><em><strong>75.16</strong></em></center></td><td><center><em>86.45</em></center></td><td><center><em>86.31</em></center></td>
661
+ </tr>
662
+ <tr>
663
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>26.03</center></td><td><center>41.58</center></td><td><center>46.72</center></td><td><center>60.79</center></td><td><center>73.23</center></td><td><center>71.58</center></td><td><center><strong>88.42</strong></center></td><td><center><strong>88.45</strong></center></td>
664
+ </tr>
665
+ <tr>
666
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>19.14</center></td><td><center>38.10</center></td><td><center>-</center></td><td><center>-</center></td><td><center>69.38</center></td><td><center>69.34</center></td><td><center>-</center></td><td><center>-</center></td>
667
  </tr>
668
  </tbody>
669
  </table>
 
684
  <td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td>
685
  </tr>
686
  <tr>
687
+ <td><em>RoGemma-7b-Instruct-2024-06-28</em></td><td><center><em>5.26</em></center></td><td><center><em><strong>5.92</strong></em></center></td><td><center><em>4.60</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
688
+ </tr>
689
+ <tr>
690
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>5.24</center></td><td><center>5.55</center></td><td><center>4.94</center></td><td><center><strong>160/160</strong></center></td>
691
+ </tr>
692
+ <tr>
693
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>5.47</strong></center></td><td><center><strong>5.92</strong></center></td><td><center><strong>5.03</strong></center></td><td><center><strong>160/160</strong></center></td>
694
  </tr>
695
  </tbody>
696
  </table>
697
 
698
+
699
  ## RoCulturaBench
700
 
701
  <table>
 
706
  <td><strong><center>Answers in Ro</center></strong></td>
707
  </tr>
708
  <tr>
709
+ <td>gemma-1.1-7b-it</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
710
+ </tr>
711
+ <tr>
712
+ <td><em>RoGemma-7b-Instruct-2024-06-28</em></td><td><center><em>3.26</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
713
  </tr>
714
  <tr>
715
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>3.51</center></td><td><center><strong>100/100</strong></center></td>
716
+ </tr>
717
+ <tr>
718
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>3.94</strong></center></td><td><center><strong>100/100</strong></center></td>
719
  </tr>
720
  </tbody>
721
  </table>
722
 
 
723
  ## RoGemma Model Family
724
 
725
  | Model | Link |
726
  |--------------------|:--------:|
727
+ |*RoGemma-7b-Instruct-2024-06-28*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28) |
728
+ |RoGemma-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09) |
729
+ |RoGemma-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09) |
730
 
731
 
732
  ## Citation