mihaimasala commited on
Commit
77500d3
·
verified ·
1 Parent(s): d3506e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +474 -473
README.md CHANGED
@@ -15,479 +15,480 @@ datasets:
15
  - OpenLLM-Ro/ro_sft_oasst
16
  - OpenLLM-Ro/ro_sft_ultrachat
17
  model-index:
18
- - name: OpenLLM-Ro/RoLlama2-7b-Instruct-2024-10-09
19
- results:
20
- - task:
21
- type: text-generation
22
- dataset:
23
- name: RoMT-Bench
24
- type: RoMT-Bench
25
- metrics:
26
- - name: Score
27
- type: Score
28
- value: 4.43
29
- - task:
30
- type: text-generation
31
- dataset:
32
- name: RoCulturaBench
33
- type: RoCulturaBench
34
- metrics:
35
- - name: Score
36
- type: Score
37
- value: 4.08
38
- - task:
39
- type: text-generation
40
- dataset:
41
- name: Romanian_Academic_Benchmarks
42
- type: Romanian_Academic_Benchmarks
43
- metrics:
44
- - name: Average accuracy
45
- type: accuracy
46
- value: 44.5
47
- - task:
48
- type: text-generation
49
- dataset:
50
- name: OpenLLM-Ro/ro_arc_challenge
51
- type: OpenLLM-Ro/ro_arc_challenge
52
- metrics:
53
- - name: Average accuracy
54
- type: accuracy
55
- value: 44.73
56
- - task:
57
- type: text-generation
58
- dataset:
59
- name: OpenLLM-Ro/ro_mmlu
60
- type: OpenLLM-Ro/ro_mmlu
61
- metrics:
62
- - name: Average accuracy
63
- type: accuracy
64
- value: 40.39
65
- - task:
66
- type: text-generation
67
- dataset:
68
- name: OpenLLM-Ro/ro_winogrande
69
- type: OpenLLM-Ro/ro_winogrande
70
- metrics:
71
- - name: Average accuracy
72
- type: accuracy
73
- value: 63.67
74
- - task:
75
- type: text-generation
76
- dataset:
77
- name: OpenLLM-Ro/ro_hellaswag
78
- type: OpenLLM-Ro/ro_hellaswag
79
- metrics:
80
- - name: Average accuracy
81
- type: accuracy
82
- value: 59.12
83
- - task:
84
- type: text-generation
85
- dataset:
86
- name: OpenLLM-Ro/ro_gsm8k
87
- type: OpenLLM-Ro/ro_gsm8k
88
- metrics:
89
- - name: Average accuracy
90
- type: accuracy
91
- value: 13.29
92
- - task:
93
- type: text-generation
94
- dataset:
95
- name: OpenLLM-Ro/ro_truthfulqa
96
- type: OpenLLM-Ro/ro_truthfulqa
97
- metrics:
98
- - name: Average accuracy
99
- type: accuracy
100
- value: 45.78
101
- - task:
102
- type: text-generation
103
- dataset:
104
- name: LaRoSeDa_binary
105
- type: LaRoSeDa_binary
106
- metrics:
107
- - name: Average macro-f1
108
- type: macro-f1
109
- value: 97.66
110
- - task:
111
- type: text-generation
112
- dataset:
113
- name: LaRoSeDa_multiclass
114
- type: LaRoSeDa_multiclass
115
- metrics:
116
- - name: Average macro-f1
117
- type: macro-f1
118
- value: 62.41
119
- - task:
120
- type: text-generation
121
- dataset:
122
- name: LaRoSeDa_binary_finetuned
123
- type: LaRoSeDa_binary_finetuned
124
- metrics:
125
- - name: Average macro-f1
126
- type: macro-f1
127
- value: 97.97
128
- - task:
129
- type: text-generation
130
- dataset:
131
- name: LaRoSeDa_multiclass_finetuned
132
- type: LaRoSeDa_multiclass_finetuned
133
- metrics:
134
- - name: Average macro-f1
135
- type: macro-f1
136
- value: 60.89
137
- - task:
138
- type: text-generation
139
- dataset:
140
- name: WMT_EN-RO
141
- type: WMT_EN-RO
142
- metrics:
143
- - name: Average bleu
144
- type: bleu
145
- value: 27.13
146
- - task:
147
- type: text-generation
148
- dataset:
149
- name: WMT_RO-EN
150
- type: WMT_RO-EN
151
- metrics:
152
- - name: Average bleu
153
- type: bleu
154
- value: 19.39
155
- - task:
156
- type: text-generation
157
- dataset:
158
- name: WMT_EN-RO_finetuned
159
- type: WMT_EN-RO_finetuned
160
- metrics:
161
- - name: Average bleu
162
- type: bleu
163
- value: 27.63
164
- - task:
165
- type: text-generation
166
- dataset:
167
- name: WMT_RO-EN_finetuned
168
- type: WMT_RO-EN_finetuned
169
- metrics:
170
- - name: Average bleu
171
- type: bleu
172
- value: 39.75
173
- - task:
174
- type: text-generation
175
- dataset:
176
- name: XQuAD
177
- type: XQuAD
178
- metrics:
179
- - name: Average exact_match
180
- type: exact_match
181
- value: 45.71
182
- - task:
183
- type: text-generation
184
- dataset:
185
- name: XQuAD
186
- type: XQuAD
187
- metrics:
188
- - name: Average f1
189
- type: f1
190
- value: 65.08
191
- - task:
192
- type: text-generation
193
- dataset:
194
- name: XQuAD_finetuned
195
- type: XQuAD_finetuned
196
- metrics:
197
- - name: Average exact_match
198
- type: exact_match
199
- value: 59.24
200
- - task:
201
- type: text-generation
202
- dataset:
203
- name: XQuAD_finetuned
204
- type: XQuAD_finetuned
205
- metrics:
206
- - name: Average f1
207
- type: f1
208
- value: 74.25
209
- - task:
210
- type: text-generation
211
- dataset:
212
- name: STS
213
- type: STS
214
- metrics:
215
- - name: Average spearman
216
- type: spearman
217
- value: 59.69
218
- - task:
219
- type: text-generation
220
- dataset:
221
- name: STS
222
- type: STS
223
- metrics:
224
- - name: Average pearson
225
- type: pearson
226
- value: 57.16
227
- - task:
228
- type: text-generation
229
- dataset:
230
- name: STS_finetuned
231
- type: STS_finetuned
232
- metrics:
233
- - name: Average spearman
234
- type: spearman
235
- value: 84.66
236
- - task:
237
- type: text-generation
238
- dataset:
239
- name: STS_finetuned
240
- type: STS_finetuned
241
- metrics:
242
- - name: Average pearson
243
- type: pearson
244
- value: 85.07
245
- - task:
246
- type: text-generation
247
- dataset:
248
- name: RoMT-Bench
249
- type: RoMT-Bench
250
- metrics:
251
- - name: First turn
252
- type: Score
253
- value: 4.92
254
- - name: Second turn
255
- type: Score
256
- value: 3.94
257
- - task:
258
- type: text-generation
259
- dataset:
260
- name: OpenLLM-Ro/ro_arc_challenge
261
- type: OpenLLM-Ro/ro_arc_challenge
262
- metrics:
263
- - name: 0-shot
264
- type: accuracy
265
- value: 42.67
266
- - name: 1-shot
267
- type: accuracy
268
- value: 44.64
269
- - name: 3-shot
270
- type: accuracy
271
- value: 44.9
272
- - name: 5-shot
273
- type: accuracy
274
- value: 45.16
275
- - name: 10-shot
276
- type: accuracy
277
- value: 45.67
278
- - name: 25-shot
279
- type: accuracy
280
- value: 45.33
281
- - task:
282
- type: text-generation
283
- dataset:
284
- name: OpenLLM-Ro/ro_mmlu
285
- type: OpenLLM-Ro/ro_mmlu
286
- metrics:
287
- - name: 0-shot
288
- type: accuracy
289
- value: 39.89
290
- - name: 1-shot
291
- type: accuracy
292
- value: 40.08
293
- - name: 3-shot
294
- type: accuracy
295
- value: 40.6
296
- - name: 5-shot
297
- type: accuracy
298
- value: 40.99
299
- - task:
300
- type: text-generation
301
- dataset:
302
- name: OpenLLM-Ro/ro_winogrande
303
- type: OpenLLM-Ro/ro_winogrande
304
- metrics:
305
- - name: 0-shot
306
- type: accuracy
307
- value: 63.06
308
- - name: 1-shot
309
- type: accuracy
310
- value: 62.98
311
- - name: 3-shot
312
- type: accuracy
313
- value: 65.19
314
- - name: 5-shot
315
- type: accuracy
316
- value: 63.46
317
- - task:
318
- type: text-generation
319
- dataset:
320
- name: OpenLLM-Ro/ro_hellaswag
321
- type: OpenLLM-Ro/ro_hellaswag
322
- metrics:
323
- - name: 0-shot
324
- type: accuracy
325
- value: 58.82
326
- - name: 1-shot
327
- type: accuracy
328
- value: 58.44
329
- - name: 3-shot
330
- type: accuracy
331
- value: 59.28
332
- - name: 5-shot
333
- type: accuracy
334
- value: 59.29
335
- - name: 10-shot
336
- type: accuracy
337
- value: 59.77
338
- - task:
339
- type: text-generation
340
- dataset:
341
- name: OpenLLM-Ro/ro_gsm8k
342
- type: OpenLLM-Ro/ro_gsm8k
343
- metrics:
344
- - name: 0-shot
345
- type: accuracy
346
- value: 6.14
347
- - name: 1-shot
348
- type: accuracy
349
- value: 15.01
350
- - name: 3-shot
351
- type: accuracy
352
- value: 18.72
353
- - task:
354
- type: text-generation
355
- dataset:
356
- name: LaRoSeDa_binary
357
- type: LaRoSeDa_binary
358
- metrics:
359
- - name: 0-shot
360
- type: macro-f1
361
- value: 98.2
362
- - name: 1-shot
363
- type: macro-f1
364
- value: 96.63
365
- - name: 3-shot
366
- type: macro-f1
367
- value: 97.67
368
- - name: 5-shot
369
- type: macro-f1
370
- value: 98.13
371
- - task:
372
- type: text-generation
373
- dataset:
374
- name: LaRoSeDa_multiclass
375
- type: LaRoSeDa_multiclass
376
- metrics:
377
- - name: 0-shot
378
- type: macro-f1
379
- value: 63.43
380
- - name: 1-shot
381
- type: macro-f1
382
- value: 53.58
383
- - name: 3-shot
384
- type: macro-f1
385
- value: 63.78
386
- - name: 5-shot
387
- type: macro-f1
388
- value: 68.85
389
- - task:
390
- type: text-generation
391
- dataset:
392
- name: WMT_EN-RO
393
- type: WMT_EN-RO
394
- metrics:
395
- - name: 0-shot
396
- type: bleu
397
- value: 20.57
398
- - name: 1-shot
399
- type: bleu
400
- value: 29.59
401
- - name: 3-shot
402
- type: bleu
403
- value: 29.5
404
- - name: 5-shot
405
- type: bleu
406
- value: 28.88
407
- - task:
408
- type: text-generation
409
- dataset:
410
- name: WMT_RO-EN
411
- type: WMT_RO-EN
412
- metrics:
413
- - name: 0-shot
414
- type: bleu
415
- value: 2.19
416
- - name: 1-shot
417
- type: bleu
418
- value: 9.97
419
- - name: 3-shot
420
- type: bleu
421
- value: 31.19
422
- - name: 5-shot
423
- type: bleu
424
- value: 34.23
425
- - task:
426
- type: text-generation
427
- dataset:
428
- name: XQuAD_EM
429
- type: XQuAD_EM
430
- metrics:
431
- - name: 0-shot
432
- type: exact_match
433
- value: 40.25
434
- - name: 1-shot
435
- type: exact_match
436
- value: 46.47
437
- - name: 3-shot
438
- type: exact_match
439
- value: 47.56
440
- - name: 5-shot
441
- type: exact_match
442
- value: 48.57
443
- - task:
444
- type: text-generation
445
- dataset:
446
- name: XQuAD_F1
447
- type: XQuAD_F1
448
- metrics:
449
- - name: 0-shot
450
- type: f1
451
- value: 62.24
452
- - name: 1-shot
453
- type: f1
454
- value: 65.33
455
- - name: 3-shot
456
- type: f1
457
- value: 65.89
458
- - name: 5-shot
459
- type: f1
460
- value: 66.86
461
- - task:
462
- type: text-generation
463
- dataset:
464
- name: STS
465
- type: STS
466
- metrics:
467
- - name: 0-shot
468
- type: spearman
469
- value: 55.44
470
- - name: 1-shot
471
- type: spearman
472
- value: 61.98
473
- - name: 3-shot
474
- type: spearman
475
- value: 61.65
476
- - task:
477
- type: text-generation
478
- dataset:
479
- name: STS
480
- type: STS
481
- metrics:
482
- - name: 0-shot
483
- type: pearson
484
- value: 56.18
485
- - name: 1-shot
486
- type: pearson
487
- value: 58.37
488
- - name: 3-shot
489
- type: pearson
490
- value: 56.94
 
491
  ---
492
 
493
  # Model Card for Model ID
 
15
  - OpenLLM-Ro/ro_sft_oasst
16
  - OpenLLM-Ro/ro_sft_ultrachat
17
  model-index:
18
+ - name: OpenLLM-Ro/RoLlama2-7b-Instruct-2024-10-09
19
+ results:
20
+ - task:
21
+ type: text-generation
22
+ dataset:
23
+ name: RoMT-Bench
24
+ type: RoMT-Bench
25
+ metrics:
26
+ - name: Score
27
+ type: Score
28
+ value: 4.43
29
+ - task:
30
+ type: text-generation
31
+ dataset:
32
+ name: RoCulturaBench
33
+ type: RoCulturaBench
34
+ metrics:
35
+ - name: Score
36
+ type: Score
37
+ value: 4.08
38
+ - task:
39
+ type: text-generation
40
+ dataset:
41
+ name: Romanian_Academic_Benchmarks
42
+ type: Romanian_Academic_Benchmarks
43
+ metrics:
44
+ - name: Average accuracy
45
+ type: accuracy
46
+ value: 44.50
47
+ - task:
48
+ type: text-generation
49
+ dataset:
50
+ name: OpenLLM-Ro/ro_arc_challenge
51
+ type: OpenLLM-Ro/ro_arc_challenge
52
+ metrics:
53
+ - name: Average accuracy
54
+ type: accuracy
55
+ value: 44.73
56
+ - task:
57
+ type: text-generation
58
+ dataset:
59
+ name: OpenLLM-Ro/ro_mmlu
60
+ type: OpenLLM-Ro/ro_mmlu
61
+ metrics:
62
+ - name: Average accuracy
63
+ type: accuracy
64
+ value: 40.39
65
+ - task:
66
+ type: text-generation
67
+ dataset:
68
+ name: OpenLLM-Ro/ro_winogrande
69
+ type: OpenLLM-Ro/ro_winogrande
70
+ metrics:
71
+ - name: Average accuracy
72
+ type: accuracy
73
+ value: 63.67
74
+ - task:
75
+ type: text-generation
76
+ dataset:
77
+ name: OpenLLM-Ro/ro_hellaswag
78
+ type: OpenLLM-Ro/ro_hellaswag
79
+ metrics:
80
+ - name: Average accuracy
81
+ type: accuracy
82
+ value: 59.12
83
+ - task:
84
+ type: text-generation
85
+ dataset:
86
+ name: OpenLLM-Ro/ro_gsm8k
87
+ type: OpenLLM-Ro/ro_gsm8k
88
+ metrics:
89
+ - name: Average accuracy
90
+ type: accuracy
91
+ value: 13.29
92
+ - task:
93
+ type: text-generation
94
+ dataset:
95
+ name: OpenLLM-Ro/ro_truthfulqa
96
+ type: OpenLLM-Ro/ro_truthfulqa
97
+ metrics:
98
+ - name: Average accuracy
99
+ type: accuracy
100
+ value: 45.78
101
+ - task:
102
+ type: text-generation
103
+ dataset:
104
+ name: LaRoSeDa_binary
105
+ type: LaRoSeDa_binary
106
+ metrics:
107
+ - name: Average macro-f1
108
+ type: macro-f1
109
+ value: 97.66
110
+ - task:
111
+ type: text-generation
112
+ dataset:
113
+ name: LaRoSeDa_multiclass
114
+ type: LaRoSeDa_multiclass
115
+ metrics:
116
+ - name: Average macro-f1
117
+ type: macro-f1
118
+ value: 62.41
119
+ - task:
120
+ type: text-generation
121
+ dataset:
122
+ name: LaRoSeDa_binary_finetuned
123
+ type: LaRoSeDa_binary_finetuned
124
+ metrics:
125
+ - name: Average macro-f1
126
+ type: macro-f1
127
+ value: 97.97
128
+ - task:
129
+ type: text-generation
130
+ dataset:
131
+ name: LaRoSeDa_multiclass_finetuned
132
+ type: LaRoSeDa_multiclass_finetuned
133
+ metrics:
134
+ - name: Average macro-f1
135
+ type: macro-f1
136
+ value: 60.89
137
+ - task:
138
+ type: text-generation
139
+ dataset:
140
+ name: WMT_EN-RO
141
+ type: WMT_EN-RO
142
+ metrics:
143
+ - name: Average bleu
144
+ type: bleu
145
+ value: 27.13
146
+ - task:
147
+ type: text-generation
148
+ dataset:
149
+ name: WMT_RO-EN
150
+ type: WMT_RO-EN
151
+ metrics:
152
+ - name: Average bleu
153
+ type: bleu
154
+ value: 19.39
155
+ - task:
156
+ type: text-generation
157
+ dataset:
158
+ name: WMT_EN-RO_finetuned
159
+ type: WMT_EN-RO_finetuned
160
+ metrics:
161
+ - name: Average bleu
162
+ type: bleu
163
+ value: 27.63
164
+ - task:
165
+ type: text-generation
166
+ dataset:
167
+ name: WMT_RO-EN_finetuned
168
+ type: WMT_RO-EN_finetuned
169
+ metrics:
170
+ - name: Average bleu
171
+ type: bleu
172
+ value: 39.75
173
+ - task:
174
+ type: text-generation
175
+ dataset:
176
+ name: XQuAD
177
+ type: XQuAD
178
+ metrics:
179
+ - name: Average exact_match
180
+ type: exact_match
181
+ value: 45.71
182
+ - task:
183
+ type: text-generation
184
+ dataset:
185
+ name: XQuAD
186
+ type: XQuAD
187
+ metrics:
188
+ - name: Average f1
189
+ type: f1
190
+ value: 65.08
191
+ - task:
192
+ type: text-generation
193
+ dataset:
194
+ name: XQuAD_finetuned
195
+ type: XQuAD_finetuned
196
+ metrics:
197
+ - name: Average exact_match
198
+ type: exact_match
199
+ value: 59.24
200
+ - task:
201
+ type: text-generation
202
+ dataset:
203
+ name: XQuAD_finetuned
204
+ type: XQuAD_finetuned
205
+ metrics:
206
+ - name: Average f1
207
+ type: f1
208
+ value: 74.25
209
+ - task:
210
+ type: text-generation
211
+ dataset:
212
+ name: STS
213
+ type: STS
214
+ metrics:
215
+ - name: Average spearman
216
+ type: spearman
217
+ value: 59.69
218
+ - task:
219
+ type: text-generation
220
+ dataset:
221
+ name: STS
222
+ type: STS
223
+ metrics:
224
+ - name: Average pearson
225
+ type: pearson
226
+ value: 57.16
227
+ - task:
228
+ type: text-generation
229
+ dataset:
230
+ name: STS_finetuned
231
+ type: STS_finetuned
232
+ metrics:
233
+ - name: Average spearman
234
+ type: spearman
235
+ value: 84.66
236
+ - task:
237
+ type: text-generation
238
+ dataset:
239
+ name: STS_finetuned
240
+ type: STS_finetuned
241
+ metrics:
242
+ - name: Average pearson
243
+ type: pearson
244
+ value: 85.07
245
+ - task:
246
+ type: text-generation
247
+ dataset:
248
+ name: RoMT-Bench
249
+ type: RoMT-Bench
250
+ metrics:
251
+ - name: First turn
252
+ type: Score
253
+ value: 4.92
254
+ - name: Second turn
255
+ type: Score
256
+ value: 3.94
257
+ - task:
258
+ type: text-generation
259
+ dataset:
260
+ name: OpenLLM-Ro/ro_arc_challenge
261
+ type: OpenLLM-Ro/ro_arc_challenge
262
+ metrics:
263
+ - name: 0-shot
264
+ type: accuracy
265
+ value: 42.67
266
+ - name: 1-shot
267
+ type: accuracy
268
+ value: 44.64
269
+ - name: 3-shot
270
+ type: accuracy
271
+ value: 44.90
272
+ - name: 5-shot
273
+ type: accuracy
274
+ value: 45.16
275
+ - name: 10-shot
276
+ type: accuracy
277
+ value: 45.67
278
+ - name: 25-shot
279
+ type: accuracy
280
+ value: 45.33
281
+ - task:
282
+ type: text-generation
283
+ dataset:
284
+ name: OpenLLM-Ro/ro_mmlu
285
+ type: OpenLLM-Ro/ro_mmlu
286
+ metrics:
287
+ - name: 0-shot
288
+ type: accuracy
289
+ value: 39.89
290
+ - name: 1-shot
291
+ type: accuracy
292
+ value: 40.08
293
+ - name: 3-shot
294
+ type: accuracy
295
+ value: 40.60
296
+ - name: 5-shot
297
+ type: accuracy
298
+ value: 40.99
299
+ - task:
300
+ type: text-generation
301
+ dataset:
302
+ name: OpenLLM-Ro/ro_winogrande
303
+ type: OpenLLM-Ro/ro_winogrande
304
+ metrics:
305
+ - name: 0-shot
306
+ type: accuracy
307
+ value: 63.06
308
+ - name: 1-shot
309
+ type: accuracy
310
+ value: 62.98
311
+ - name: 3-shot
312
+ type: accuracy
313
+ value: 65.19
314
+ - name: 5-shot
315
+ type: accuracy
316
+ value: 63.46
317
+ - task:
318
+ type: text-generation
319
+ dataset:
320
+ name: OpenLLM-Ro/ro_hellaswag
321
+ type: OpenLLM-Ro/ro_hellaswag
322
+ metrics:
323
+ - name: 0-shot
324
+ type: accuracy
325
+ value: 58.82
326
+ - name: 1-shot
327
+ type: accuracy
328
+ value: 58.44
329
+ - name: 3-shot
330
+ type: accuracy
331
+ value: 59.28
332
+ - name: 5-shot
333
+ type: accuracy
334
+ value: 59.29
335
+ - name: 10-shot
336
+ type: accuracy
337
+ value: 59.77
338
+ - task:
339
+ type: text-generation
340
+ dataset:
341
+ name: OpenLLM-Ro/ro_gsm8k
342
+ type: OpenLLM-Ro/ro_gsm8k
343
+ metrics:
344
+ - name: 0-shot
345
+ type: accuracy
346
+ value: 6.14
347
+ - name: 1-shot
348
+ type: accuracy
349
+ value: 15.01
350
+ - name: 3-shot
351
+ type: accuracy
352
+ value: 18.72
353
+ - task:
354
+ type: text-generation
355
+ dataset:
356
+ name: LaRoSeDa_binary
357
+ type: LaRoSeDa_binary
358
+ metrics:
359
+ - name: 0-shot
360
+ type: macro-f1
361
+ value: 98.20
362
+ - name: 1-shot
363
+ type: macro-f1
364
+ value: 96.63
365
+ - name: 3-shot
366
+ type: macro-f1
367
+ value: 97.67
368
+ - name: 5-shot
369
+ type: macro-f1
370
+ value: 98.13
371
+ - task:
372
+ type: text-generation
373
+ dataset:
374
+ name: LaRoSeDa_multiclass
375
+ type: LaRoSeDa_multiclass
376
+ metrics:
377
+ - name: 0-shot
378
+ type: macro-f1
379
+ value: 63.43
380
+ - name: 1-shot
381
+ type: macro-f1
382
+ value: 53.58
383
+ - name: 3-shot
384
+ type: macro-f1
385
+ value: 63.78
386
+ - name: 5-shot
387
+ type: macro-f1
388
+ value: 68.85
389
+ - task:
390
+ type: text-generation
391
+ dataset:
392
+ name: WMT_EN-RO
393
+ type: WMT_EN-RO
394
+ metrics:
395
+ - name: 0-shot
396
+ type: bleu
397
+ value: 20.57
398
+ - name: 1-shot
399
+ type: bleu
400
+ value: 29.59
401
+ - name: 3-shot
402
+ type: bleu
403
+ value: 29.50
404
+ - name: 5-shot
405
+ type: bleu
406
+ value: 28.88
407
+ - task:
408
+ type: text-generation
409
+ dataset:
410
+ name: WMT_RO-EN
411
+ type: WMT_RO-EN
412
+ metrics:
413
+ - name: 0-shot
414
+ type: bleu
415
+ value: 2.19
416
+ - name: 1-shot
417
+ type: bleu
418
+ value: 9.97
419
+ - name: 3-shot
420
+ type: bleu
421
+ value: 31.19
422
+ - name: 5-shot
423
+ type: bleu
424
+ value: 34.23
425
+ - task:
426
+ type: text-generation
427
+ dataset:
428
+ name: XQuAD_EM
429
+ type: XQuAD_EM
430
+ metrics:
431
+ - name: 0-shot
432
+ type: exact_match
433
+ value: 40.25
434
+ - name: 1-shot
435
+ type: exact_match
436
+ value: 46.47
437
+ - name: 3-shot
438
+ type: exact_match
439
+ value: 47.56
440
+ - name: 5-shot
441
+ type: exact_match
442
+ value: 48.57
443
+ - task:
444
+ type: text-generation
445
+ dataset:
446
+ name: XQuAD_F1
447
+ type: XQuAD_F1
448
+ metrics:
449
+ - name: 0-shot
450
+ type: f1
451
+ value: 62.24
452
+ - name: 1-shot
453
+ type: f1
454
+ value: 65.33
455
+ - name: 3-shot
456
+ type: f1
457
+ value: 65.89
458
+ - name: 5-shot
459
+ type: f1
460
+ value: 66.86
461
+ - task:
462
+ type: text-generation
463
+ dataset:
464
+ name: STS_Spearman
465
+ type: STS_Spearman
466
+ metrics:
467
+ - name: 1-shot
468
+ type: spearman
469
+ value: 55.44
470
+ - name: 3-shot
471
+ type: spearman
472
+ value: 61.98
473
+ - name: 5-shot
474
+ type: spearman
475
+ value: 61.65
476
+ - task:
477
+ type: text-generation
478
+ dataset:
479
+ name: STS_Pearson
480
+ type: STS_Pearson
481
+ metrics:
482
+ - name: 1-shot
483
+ type: pearson
484
+ value: 56.18
485
+ - name: 3-shot
486
+ type: pearson
487
+ value: 58.37
488
+ - name: 5-shot
489
+ type: pearson
490
+ value: 56.94
491
+
492
  ---
493
 
494
  # Model Card for Model ID