mihaimasala
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -14,6 +14,481 @@ datasets:
|
|
14 |
- OpenLLM-Ro/ro_sft_camel
|
15 |
- OpenLLM-Ro/ro_sft_oasst
|
16 |
- OpenLLM-Ro/ro_sft_ultrachat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
---
|
18 |
|
19 |
# Model Card for Model ID
|
@@ -37,7 +512,8 @@ OpenLLM represents the first open-source effort to build a LLM specialized for R
|
|
37 |
- **Language(s):** Romanian
|
38 |
- **License:** cc-by-nc-4.0
|
39 |
- **Finetuned from model:** [RoLlama2-7b-Base](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base)
|
40 |
-
- **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel)
|
|
|
41 |
|
42 |
### Model Sources
|
43 |
|
@@ -101,12 +577,16 @@ print(tokenizer.decode(outputs[0]))
|
|
101 |
<td>Llama-2-7b-chat</td><td><center>36.84</center></td><td><center>37.03</center></td><td><center>33.80</center></td><td><center>55.87</center></td><td><center>45.36</center></td><td><center>4.90</center></td><td><center>44.09</center></td>
|
102 |
</tr>
|
103 |
<tr>
|
104 |
-
<td
|
|
|
|
|
|
|
105 |
</tr>
|
106 |
</tbody>
|
107 |
</table>
|
108 |
|
109 |
|
|
|
110 |
## Downstream tasks
|
111 |
|
112 |
|
@@ -139,7 +619,10 @@ print(tokenizer.decode(outputs[0]))
|
|
139 |
<td>Llama-2-7b-chat</td><td><center>87.78</center></td><td><center>52.81</center></td><td><center>97.27</center></td><td><center>82.02</center></td><td><center>15.55</center></td><td><center><strong>28.53</strong></center></td><td><center>19.99</center></td><td><center>31.48</center></td>
|
140 |
</tr>
|
141 |
<tr>
|
142 |
-
<td
|
|
|
|
|
|
|
143 |
</tr>
|
144 |
</tbody>
|
145 |
</table>
|
@@ -174,7 +657,10 @@ print(tokenizer.decode(outputs[0]))
|
|
174 |
<td>Llama-2-7b-chat</td><td><center>32.35</center></td><td><center>54.00</center></td><td><center><strong>60.34</strong></center></td><td><center><strong>75.98</strong></center></td><td><center>32.56</center></td><td><center>31.99</center></td><td><center>74.08</center></td><td><center>72.64</center></td>
|
175 |
</tr>
|
176 |
<tr>
|
177 |
-
<td
|
|
|
|
|
|
|
178 |
</tr>
|
179 |
</tbody>
|
180 |
</table>
|
@@ -194,12 +680,16 @@ print(tokenizer.decode(outputs[0]))
|
|
194 |
<td>Llama-2-7b-chat</td><td><center>1.08</center></td><td><center>1.44</center></td><td><center>0.73</center></td><td><center>45/160</center></td>
|
195 |
</tr>
|
196 |
<tr>
|
197 |
-
<td
|
|
|
|
|
|
|
198 |
</tr>
|
199 |
</tbody>
|
200 |
</table>
|
201 |
|
202 |
|
|
|
203 |
## RoCulturaBench
|
204 |
|
205 |
|
@@ -214,7 +704,10 @@ print(tokenizer.decode(outputs[0]))
|
|
214 |
<td>Llama-2-7b-chat</td><td><center>1.21</center></td><td><center>33/100</center></td>
|
215 |
</tr>
|
216 |
<tr>
|
217 |
-
<td
|
|
|
|
|
|
|
218 |
</tr>
|
219 |
</tbody>
|
220 |
</table>
|
|
|
14 |
- OpenLLM-Ro/ro_sft_camel
|
15 |
- OpenLLM-Ro/ro_sft_oasst
|
16 |
- OpenLLM-Ro/ro_sft_ultrachat
|
17 |
+
model-index:
|
18 |
+
- name: OpenLLM-Ro/RoLlama2-7b-Instruct-v2
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
type: text-generation
|
22 |
+
dataset:
|
23 |
+
name: RoMT-Bench
|
24 |
+
type: RoMT-Bench
|
25 |
+
metrics:
|
26 |
+
- name: Score
|
27 |
+
type: Score
|
28 |
+
value: 4.43
|
29 |
+
- task:
|
30 |
+
type: text-generation
|
31 |
+
dataset:
|
32 |
+
name: RoCulturaBench
|
33 |
+
type: RoCulturaBench
|
34 |
+
metrics:
|
35 |
+
- name: Score
|
36 |
+
type: Score
|
37 |
+
value: 4.08
|
38 |
+
- task:
|
39 |
+
type: text-generation
|
40 |
+
dataset:
|
41 |
+
name: Romanian_Academic_Benchmarks
|
42 |
+
type: Romanian_Academic_Benchmarks
|
43 |
+
metrics:
|
44 |
+
- name: Average accuracy
|
45 |
+
type: accuracy
|
46 |
+
value: 44.50
|
47 |
+
- task:
|
48 |
+
type: text-generation
|
49 |
+
dataset:
|
50 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
51 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
52 |
+
metrics:
|
53 |
+
- name: Average accuracy
|
54 |
+
type: accuracy
|
55 |
+
value: 44.73
|
56 |
+
- task:
|
57 |
+
type: text-generation
|
58 |
+
dataset:
|
59 |
+
name: OpenLLM-Ro/ro_mmlu
|
60 |
+
type: OpenLLM-Ro/ro_mmlu
|
61 |
+
metrics:
|
62 |
+
- name: Average accuracy
|
63 |
+
type: accuracy
|
64 |
+
value: 40.39
|
65 |
+
- task:
|
66 |
+
type: text-generation
|
67 |
+
dataset:
|
68 |
+
name: OpenLLM-Ro/ro_winogrande
|
69 |
+
type: OpenLLM-Ro/ro_winogrande
|
70 |
+
metrics:
|
71 |
+
- name: Average accuracy
|
72 |
+
type: accuracy
|
73 |
+
value: 63.67
|
74 |
+
- task:
|
75 |
+
type: text-generation
|
76 |
+
dataset:
|
77 |
+
name: OpenLLM-Ro/ro_hellaswag
|
78 |
+
type: OpenLLM-Ro/ro_hellaswag
|
79 |
+
metrics:
|
80 |
+
- name: Average accuracy
|
81 |
+
type: accuracy
|
82 |
+
value: 59.12
|
83 |
+
- task:
|
84 |
+
type: text-generation
|
85 |
+
dataset:
|
86 |
+
name: OpenLLM-Ro/ro_gsm8k
|
87 |
+
type: OpenLLM-Ro/ro_gsm8k
|
88 |
+
metrics:
|
89 |
+
- name: Average accuracy
|
90 |
+
type: accuracy
|
91 |
+
value: 13.29
|
92 |
+
- task:
|
93 |
+
type: text-generation
|
94 |
+
dataset:
|
95 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
96 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
97 |
+
metrics:
|
98 |
+
- name: Average accuracy
|
99 |
+
type: accuracy
|
100 |
+
value: 45.78
|
101 |
+
- task:
|
102 |
+
type: text-generation
|
103 |
+
dataset:
|
104 |
+
name: LaRoSeDa_binary
|
105 |
+
type: LaRoSeDa_binary
|
106 |
+
metrics:
|
107 |
+
- name: Average macro-f1
|
108 |
+
type: macro-f1
|
109 |
+
value: 97.66
|
110 |
+
- task:
|
111 |
+
type: text-generation
|
112 |
+
dataset:
|
113 |
+
name: LaRoSeDa_multiclass
|
114 |
+
type: LaRoSeDa_multiclass
|
115 |
+
metrics:
|
116 |
+
- name: Average macro-f1
|
117 |
+
type: macro-f1
|
118 |
+
value: 62.41
|
119 |
+
- task:
|
120 |
+
type: text-generation
|
121 |
+
dataset:
|
122 |
+
name: LaRoSeDa_binary_finetuned
|
123 |
+
type: LaRoSeDa_binary_finetuned
|
124 |
+
metrics:
|
125 |
+
- name: Average macro-f1
|
126 |
+
type: macro-f1
|
127 |
+
value: 97.97
|
128 |
+
- task:
|
129 |
+
type: text-generation
|
130 |
+
dataset:
|
131 |
+
name: LaRoSeDa_multiclass_finetuned
|
132 |
+
type: LaRoSeDa_multiclass_finetuned
|
133 |
+
metrics:
|
134 |
+
- name: Average macro-f1
|
135 |
+
type: macro-f1
|
136 |
+
value: 60.89
|
137 |
+
- task:
|
138 |
+
type: text-generation
|
139 |
+
dataset:
|
140 |
+
name: WMT_EN-RO
|
141 |
+
type: WMT_EN-RO
|
142 |
+
metrics:
|
143 |
+
- name: Average bleu
|
144 |
+
type: bleu
|
145 |
+
value: 27.13
|
146 |
+
- task:
|
147 |
+
type: text-generation
|
148 |
+
dataset:
|
149 |
+
name: WMT_RO-EN
|
150 |
+
type: WMT_RO-EN
|
151 |
+
metrics:
|
152 |
+
- name: Average bleu
|
153 |
+
type: bleu
|
154 |
+
value: 19.39
|
155 |
+
- task:
|
156 |
+
type: text-generation
|
157 |
+
dataset:
|
158 |
+
name: WMT_EN-RO_finetuned
|
159 |
+
type: WMT_EN-RO_finetuned
|
160 |
+
metrics:
|
161 |
+
- name: Average bleu
|
162 |
+
type: bleu
|
163 |
+
value: 27.63
|
164 |
+
- task:
|
165 |
+
type: text-generation
|
166 |
+
dataset:
|
167 |
+
name: WMT_RO-EN_finetuned
|
168 |
+
type: WMT_RO-EN_finetuned
|
169 |
+
metrics:
|
170 |
+
- name: Average bleu
|
171 |
+
type: bleu
|
172 |
+
value: 39.75
|
173 |
+
- task:
|
174 |
+
type: text-generation
|
175 |
+
dataset:
|
176 |
+
name: XQuAD
|
177 |
+
type: XQuAD
|
178 |
+
metrics:
|
179 |
+
- name: Average exact_match
|
180 |
+
type: exact_match
|
181 |
+
value: 45.71
|
182 |
+
- task:
|
183 |
+
type: text-generation
|
184 |
+
dataset:
|
185 |
+
name: XQuAD
|
186 |
+
type: XQuAD
|
187 |
+
metrics:
|
188 |
+
- name: Average f1
|
189 |
+
type: f1
|
190 |
+
value: 65.08
|
191 |
+
- task:
|
192 |
+
type: text-generation
|
193 |
+
dataset:
|
194 |
+
name: XQuAD_finetuned
|
195 |
+
type: XQuAD_finetuned
|
196 |
+
metrics:
|
197 |
+
- name: Average exact_match
|
198 |
+
type: exact_match
|
199 |
+
value: 59.24
|
200 |
+
- task:
|
201 |
+
type: text-generation
|
202 |
+
dataset:
|
203 |
+
name: XQuAD_finetuned
|
204 |
+
type: XQuAD_finetuned
|
205 |
+
metrics:
|
206 |
+
- name: Average f1
|
207 |
+
type: f1
|
208 |
+
value: 74.25
|
209 |
+
- task:
|
210 |
+
type: text-generation
|
211 |
+
dataset:
|
212 |
+
name: STS
|
213 |
+
type: STS
|
214 |
+
metrics:
|
215 |
+
- name: Average spearman
|
216 |
+
type: spearman
|
217 |
+
value: 59.69
|
218 |
+
- task:
|
219 |
+
type: text-generation
|
220 |
+
dataset:
|
221 |
+
name: STS
|
222 |
+
type: STS
|
223 |
+
metrics:
|
224 |
+
- name: Average pearson
|
225 |
+
type: pearson
|
226 |
+
value: 57.16
|
227 |
+
- task:
|
228 |
+
type: text-generation
|
229 |
+
dataset:
|
230 |
+
name: STS_finetuned
|
231 |
+
type: STS_finetuned
|
232 |
+
metrics:
|
233 |
+
- name: Average spearman
|
234 |
+
type: spearman
|
235 |
+
value: 84.66
|
236 |
+
- task:
|
237 |
+
type: text-generation
|
238 |
+
dataset:
|
239 |
+
name: STS_finetuned
|
240 |
+
type: STS_finetuned
|
241 |
+
metrics:
|
242 |
+
- name: Average pearson
|
243 |
+
type: pearson
|
244 |
+
value: 85.07
|
245 |
+
- task:
|
246 |
+
type: text-generation
|
247 |
+
dataset:
|
248 |
+
name: RoMT-Bench
|
249 |
+
type: RoMT-Bench
|
250 |
+
metrics:
|
251 |
+
- name: First turn
|
252 |
+
type: Score
|
253 |
+
value: 4.92
|
254 |
+
- name: Second turn
|
255 |
+
type: Score
|
256 |
+
value: 3.94
|
257 |
+
- task:
|
258 |
+
type: text-generation
|
259 |
+
dataset:
|
260 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
261 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
262 |
+
metrics:
|
263 |
+
- name: 0-shot
|
264 |
+
type: accuracy
|
265 |
+
value: 42.67
|
266 |
+
- name: 1-shot
|
267 |
+
type: accuracy
|
268 |
+
value: 44.64
|
269 |
+
- name: 3-shot
|
270 |
+
type: accuracy
|
271 |
+
value: 44.90
|
272 |
+
- name: 5-shot
|
273 |
+
type: accuracy
|
274 |
+
value: 45.16
|
275 |
+
- name: 10-shot
|
276 |
+
type: accuracy
|
277 |
+
value: 45.67
|
278 |
+
- name: 25-shot
|
279 |
+
type: accuracy
|
280 |
+
value: 45.33
|
281 |
+
- task:
|
282 |
+
type: text-generation
|
283 |
+
dataset:
|
284 |
+
name: OpenLLM-Ro/ro_mmlu
|
285 |
+
type: OpenLLM-Ro/ro_mmlu
|
286 |
+
metrics:
|
287 |
+
- name: 0-shot
|
288 |
+
type: accuracy
|
289 |
+
value: 39.89
|
290 |
+
- name: 1-shot
|
291 |
+
type: accuracy
|
292 |
+
value: 40.08
|
293 |
+
- name: 3-shot
|
294 |
+
type: accuracy
|
295 |
+
value: 40.60
|
296 |
+
- name: 5-shot
|
297 |
+
type: accuracy
|
298 |
+
value: 40.99
|
299 |
+
- task:
|
300 |
+
type: text-generation
|
301 |
+
dataset:
|
302 |
+
name: OpenLLM-Ro/ro_winogrande
|
303 |
+
type: OpenLLM-Ro/ro_winogrande
|
304 |
+
metrics:
|
305 |
+
- name: 0-shot
|
306 |
+
type: accuracy
|
307 |
+
value: 63.06
|
308 |
+
- name: 1-shot
|
309 |
+
type: accuracy
|
310 |
+
value: 62.98
|
311 |
+
- name: 3-shot
|
312 |
+
type: accuracy
|
313 |
+
value: 65.19
|
314 |
+
- name: 5-shot
|
315 |
+
type: accuracy
|
316 |
+
value: 63.46
|
317 |
+
- task:
|
318 |
+
type: text-generation
|
319 |
+
dataset:
|
320 |
+
name: OpenLLM-Ro/ro_hellaswag
|
321 |
+
type: OpenLLM-Ro/ro_hellaswag
|
322 |
+
metrics:
|
323 |
+
- name: 0-shot
|
324 |
+
type: accuracy
|
325 |
+
value: 58.82
|
326 |
+
- name: 1-shot
|
327 |
+
type: accuracy
|
328 |
+
value: 58.44
|
329 |
+
- name: 3-shot
|
330 |
+
type: accuracy
|
331 |
+
value: 59.28
|
332 |
+
- name: 5-shot
|
333 |
+
type: accuracy
|
334 |
+
value: 59.29
|
335 |
+
- name: 10-shot
|
336 |
+
type: accuracy
|
337 |
+
value: 59.77
|
338 |
+
- task:
|
339 |
+
type: text-generation
|
340 |
+
dataset:
|
341 |
+
name: OpenLLM-Ro/ro_gsm8k
|
342 |
+
type: OpenLLM-Ro/ro_gsm8k
|
343 |
+
metrics:
|
344 |
+
- name: 0-shot
|
345 |
+
type: accuracy
|
346 |
+
value: 6.14
|
347 |
+
- name: 1-shot
|
348 |
+
type: accuracy
|
349 |
+
value: 15.01
|
350 |
+
- name: 3-shot
|
351 |
+
type: accuracy
|
352 |
+
value: 18.72
|
353 |
+
- task:
|
354 |
+
type: text-generation
|
355 |
+
dataset:
|
356 |
+
name: LaRoSeDa_binary
|
357 |
+
type: LaRoSeDa_binary
|
358 |
+
metrics:
|
359 |
+
- name: 0-shot
|
360 |
+
type: macro-f1
|
361 |
+
value: 98.20
|
362 |
+
- name: 1-shot
|
363 |
+
type: macro-f1
|
364 |
+
value: 96.63
|
365 |
+
- name: 3-shot
|
366 |
+
type: macro-f1
|
367 |
+
value: 97.67
|
368 |
+
- name: 5-shot
|
369 |
+
type: macro-f1
|
370 |
+
value: 98.13
|
371 |
+
- task:
|
372 |
+
type: text-generation
|
373 |
+
dataset:
|
374 |
+
name: LaRoSeDa_multiclass
|
375 |
+
type: LaRoSeDa_multiclass
|
376 |
+
metrics:
|
377 |
+
- name: 0-shot
|
378 |
+
type: macro-f1
|
379 |
+
value: 63.43
|
380 |
+
- name: 1-shot
|
381 |
+
type: macro-f1
|
382 |
+
value: 53.58
|
383 |
+
- name: 3-shot
|
384 |
+
type: macro-f1
|
385 |
+
value: 63.78
|
386 |
+
- name: 5-shot
|
387 |
+
type: macro-f1
|
388 |
+
value: 68.85
|
389 |
+
- task:
|
390 |
+
type: text-generation
|
391 |
+
dataset:
|
392 |
+
name: WMT_EN-RO
|
393 |
+
type: WMT_EN-RO
|
394 |
+
metrics:
|
395 |
+
- name: 0-shot
|
396 |
+
type: bleu
|
397 |
+
value: 20.57
|
398 |
+
- name: 1-shot
|
399 |
+
type: bleu
|
400 |
+
value: 29.59
|
401 |
+
- name: 3-shot
|
402 |
+
type: bleu
|
403 |
+
value: 29.50
|
404 |
+
- name: 5-shot
|
405 |
+
type: bleu
|
406 |
+
value: 28.88
|
407 |
+
- task:
|
408 |
+
type: text-generation
|
409 |
+
dataset:
|
410 |
+
name: WMT_RO-EN
|
411 |
+
type: WMT_RO-EN
|
412 |
+
metrics:
|
413 |
+
- name: 0-shot
|
414 |
+
type: bleu
|
415 |
+
value: 2.19
|
416 |
+
- name: 1-shot
|
417 |
+
type: bleu
|
418 |
+
value: 9.97
|
419 |
+
- name: 3-shot
|
420 |
+
type: bleu
|
421 |
+
value: 31.19
|
422 |
+
- name: 5-shot
|
423 |
+
type: bleu
|
424 |
+
value: 34.23
|
425 |
+
- task:
|
426 |
+
type: text-generation
|
427 |
+
dataset:
|
428 |
+
name: XQuAD_EM
|
429 |
+
type: XQuAD_EM
|
430 |
+
metrics:
|
431 |
+
- name: 0-shot
|
432 |
+
type: exact_match
|
433 |
+
value: 40.25
|
434 |
+
- name: 1-shot
|
435 |
+
type: exact_match
|
436 |
+
value: 46.47
|
437 |
+
- name: 3-shot
|
438 |
+
type: exact_match
|
439 |
+
value: 47.56
|
440 |
+
- name: 5-shot
|
441 |
+
type: exact_match
|
442 |
+
value: 48.57
|
443 |
+
- task:
|
444 |
+
type: text-generation
|
445 |
+
dataset:
|
446 |
+
name: XQuAD_F1
|
447 |
+
type: XQuAD_F1
|
448 |
+
metrics:
|
449 |
+
- name: 0-shot
|
450 |
+
type: f1
|
451 |
+
value: 62.24
|
452 |
+
- name: 1-shot
|
453 |
+
type: f1
|
454 |
+
value: 65.33
|
455 |
+
- name: 3-shot
|
456 |
+
type: f1
|
457 |
+
value: 65.89
|
458 |
+
- name: 5-shot
|
459 |
+
type: f1
|
460 |
+
value: 66.86
|
461 |
+
- task:
|
462 |
+
type: text-generation
|
463 |
+
dataset:
|
464 |
+
name: STS
|
465 |
+
type: STS
|
466 |
+
metrics:
|
467 |
+
- name: 0-shot
|
468 |
+
type: spearman
|
469 |
+
value: 55.44
|
470 |
+
- name: 1-shot
|
471 |
+
type: spearman
|
472 |
+
value: 61.98
|
473 |
+
- name: 3-shot
|
474 |
+
type: spearman
|
475 |
+
value: 61.65
|
476 |
+
- task:
|
477 |
+
type: text-generation
|
478 |
+
dataset:
|
479 |
+
name: STS
|
480 |
+
type: STS
|
481 |
+
metrics:
|
482 |
+
- name: 0-shot
|
483 |
+
type: pearson
|
484 |
+
value: 56.18
|
485 |
+
- name: 1-shot
|
486 |
+
type: pearson
|
487 |
+
value: 58.37
|
488 |
+
- name: 3-shot
|
489 |
+
type: pearson
|
490 |
+
value: 56.94
|
491 |
+
|
492 |
---
|
493 |
|
494 |
# Model Card for Model ID
|
|
|
512 |
- **Language(s):** Romanian
|
513 |
- **License:** cc-by-nc-4.0
|
514 |
- **Finetuned from model:** [RoLlama2-7b-Base](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base)
|
515 |
+
- **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat)
|
516 |
+
|
517 |
|
518 |
### Model Sources
|
519 |
|
|
|
577 |
<td>Llama-2-7b-chat</td><td><center>36.84</center></td><td><center>37.03</center></td><td><center>33.80</center></td><td><center>55.87</center></td><td><center>45.36</center></td><td><center>4.90</center></td><td><center>44.09</center></td>
|
578 |
</tr>
|
579 |
<tr>
|
580 |
+
<td>RoLlama2-7b-Instruct</td><td><center><strong>45.71</strong></center></td><td><center>43.66</center></td><td><center>39.70</center></td><td><center><strong>70.34</strong></center></td><td><center>57.36</center></td><td><center><strong>18.78</strong></center></td><td><center>44.44</center></td>
|
581 |
+
</tr>
|
582 |
+
<tr>
|
583 |
+
<td><em>RoLlama2-7b-Instruct-v2</em></td><td><center><em>44.50</em></center></td><td><center><em><strong>44.73</strong></em></center></td><td><center><em><strong>40.39</strong></em></center></td><td><center><em>63.67</em></center></td><td><center><em><strong>59.12</strong></em></center></td><td><center><em>13.29</em></center></td><td><center><em><strong>45.78</strong></em></center></td>
|
584 |
</tr>
|
585 |
</tbody>
|
586 |
</table>
|
587 |
|
588 |
|
589 |
+
|
590 |
## Downstream tasks
|
591 |
|
592 |
|
|
|
619 |
<td>Llama-2-7b-chat</td><td><center>87.78</center></td><td><center>52.81</center></td><td><center>97.27</center></td><td><center>82.02</center></td><td><center>15.55</center></td><td><center><strong>28.53</strong></center></td><td><center>19.99</center></td><td><center>31.48</center></td>
|
620 |
</tr>
|
621 |
<tr>
|
622 |
+
<td>RoLlama2-7b-Instruct</td><td><center>97.48</center></td><td><center><strong>65.26</strong></center></td><td><center><strong>98.83</strong></center></td><td><center><strong>87.28</strong></center></td><td><center><strong>27.38</strong></center></td><td><center>10.32</center></td><td><center>27.59</center></td><td><center><strong>40.13</strong></center></td>
|
623 |
+
</tr>
|
624 |
+
<tr>
|
625 |
+
<td><em>RoLlama2-7b-Instruct-v2</em></td><td><center><em><strong>97.66</strong></em></center></td><td><center><em>62.41</em></center></td><td><center><em>97.97</em></center></td><td><center><em>60.89</em></center></td><td><center><em>27.13</em></center></td><td><center><em>19.39</em></center></td><td><center><em><strong>27.63</strong></em></center></td><td><center><em>39.75</em></center></td>
|
626 |
</tr>
|
627 |
</tbody>
|
628 |
</table>
|
|
|
657 |
<td>Llama-2-7b-chat</td><td><center>32.35</center></td><td><center>54.00</center></td><td><center><strong>60.34</strong></center></td><td><center><strong>75.98</strong></center></td><td><center>32.56</center></td><td><center>31.99</center></td><td><center>74.08</center></td><td><center>72.64</center></td>
|
658 |
</tr>
|
659 |
<tr>
|
660 |
+
<td>RoLlama2-7b-Instruct</td><td><center>44.52</center></td><td><center>64.75</center></td><td><center>54.96</center></td><td><center>70.20</center></td><td><center><strong>65.50</strong></center></td><td><center><strong>67.79</strong></center></td><td><center>84.44</center></td><td><center>84.76</center></td>
|
661 |
+
</tr>
|
662 |
+
<tr>
|
663 |
+
<td><em>RoLlama2-7b-Instruct-v2</em></td><td><center><em><strong>45.71</strong></em></center></td><td><center><em><strong>65.08</strong></em></center></td><td><center><em>59.24</em></center></td><td><center><em>74.25</em></center></td><td><center><em>59.69</em></center></td><td><center><em>57.16</em></center></td><td><center><em><strong>84.66</strong></em></center></td><td><center><em><strong>85.07</strong></em></center></td>
|
664 |
</tr>
|
665 |
</tbody>
|
666 |
</table>
|
|
|
680 |
<td>Llama-2-7b-chat</td><td><center>1.08</center></td><td><center>1.44</center></td><td><center>0.73</center></td><td><center>45/160</center></td>
|
681 |
</tr>
|
682 |
<tr>
|
683 |
+
<td>RoLlama2-7b-Instruct</td><td><center>3.86</center></td><td><center>4.67</center></td><td><center>3.04</center></td><td><center><strong>160/160</strong></center></td>
|
684 |
+
</tr>
|
685 |
+
<tr>
|
686 |
+
<td><em>RoLlama2-7b-Instruct-v2</em></td><td><center><em><strong>4.43</strong></em></center></td><td><center><em><strong>4.92</strong></em></center></td><td><center><em><strong>3.94</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
|
687 |
</tr>
|
688 |
</tbody>
|
689 |
</table>
|
690 |
|
691 |
|
692 |
+
|
693 |
## RoCulturaBench
|
694 |
|
695 |
|
|
|
704 |
<td>Llama-2-7b-chat</td><td><center>1.21</center></td><td><center>33/100</center></td>
|
705 |
</tr>
|
706 |
<tr>
|
707 |
+
<td>RoLlama2-7b-Instruct</td><td><center>3.77</center></td><td><center><strong>100/100</strong></center></td>
|
708 |
+
</tr>
|
709 |
+
<tr>
|
710 |
+
<td><em>RoLlama2-7b-Instruct-v2</em></td><td><center><em><strong>4.08</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td>
|
711 |
</tr>
|
712 |
</tbody>
|
713 |
</table>
|