Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,355 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
|
101 |
-
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
|
107 |
-
###
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
|
|
194 |
|
195 |
-
|
|
|
|
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- ro
|
5 |
+
base_model:
|
6 |
+
- OpenLLM-Ro/RoLlama3.1-8b-Instruct
|
7 |
+
datasets:
|
8 |
+
- OpenLLM-Ro/ro_dpo_helpsteer
|
9 |
+
model-index:
|
10 |
+
- name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-4bit
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: text-generation
|
14 |
+
dataset:
|
15 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
16 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
17 |
+
metrics:
|
18 |
+
- name: Average accuracy
|
19 |
+
type: accuracy
|
20 |
+
value: 42.74
|
21 |
+
- name: 0-shot
|
22 |
+
type: accuracy
|
23 |
+
value: 40.79
|
24 |
+
- name: 1-shot
|
25 |
+
type: accuracy
|
26 |
+
value: 40.36
|
27 |
+
- name: 3-shot
|
28 |
+
type: accuracy
|
29 |
+
value: 43.36
|
30 |
+
- name: 5-shot
|
31 |
+
type: accuracy
|
32 |
+
value: 44.04
|
33 |
+
- name: 10-shot
|
34 |
+
type: accuracy
|
35 |
+
value: 43.87
|
36 |
+
- name: 25-shot
|
37 |
+
type: accuracy
|
38 |
+
value: 44.04
|
39 |
+
|
40 |
+
- task:
|
41 |
+
type: text-generation
|
42 |
+
dataset:
|
43 |
+
name: OpenLLM-Ro/ro_mmlu
|
44 |
+
type: OpenLLM-Ro/ro_mmlu
|
45 |
+
metrics:
|
46 |
+
- name: Average accuracy
|
47 |
+
type: accuracy
|
48 |
+
value: 42.27
|
49 |
+
- name: 0-shot
|
50 |
+
type: accuracy
|
51 |
+
value: 43.23
|
52 |
+
- name: 1-shot
|
53 |
+
type: accuracy
|
54 |
+
value: 42.47
|
55 |
+
- name: 3-shot
|
56 |
+
type: accuracy
|
57 |
+
value: 42.19
|
58 |
+
- name: 5-shot
|
59 |
+
type: accuracy
|
60 |
+
value: 41.19
|
61 |
+
|
62 |
+
- task:
|
63 |
+
type: text-generation
|
64 |
+
dataset:
|
65 |
+
name: OpenLLM-Ro/ro_winogrande
|
66 |
+
type: OpenLLM-Ro/ro_winogrande
|
67 |
+
metrics:
|
68 |
+
- name: Average accuracy
|
69 |
+
type: accuracy
|
70 |
+
value: 64.94
|
71 |
+
- name: 0-shot
|
72 |
+
type: accuracy
|
73 |
+
value: 63.14
|
74 |
+
- name: 1-shot
|
75 |
+
type: accuracy
|
76 |
+
value: 64.64
|
77 |
+
- name: 3-shot
|
78 |
+
type: accuracy
|
79 |
+
value: 65.43
|
80 |
+
- name: 5-shot
|
81 |
+
type: accuracy
|
82 |
+
value: 66.54
|
83 |
+
|
84 |
+
- task:
|
85 |
+
type: text-generation
|
86 |
+
dataset:
|
87 |
+
name: OpenLLM-Ro/ro_hellaswag
|
88 |
+
type: OpenLLM-Ro/ro_hellaswag
|
89 |
+
metrics:
|
90 |
+
- name: Average accuracy
|
91 |
+
type: accuracy
|
92 |
+
value: 52.39
|
93 |
+
- name: 0-shot
|
94 |
+
type: accuracy
|
95 |
+
value: 52.42
|
96 |
+
- name: 1-shot
|
97 |
+
type: accuracy
|
98 |
+
value: 52.30
|
99 |
+
- name: 3-shot
|
100 |
+
type: accuracy
|
101 |
+
value: 52.60
|
102 |
+
- name: 5-shot
|
103 |
+
type: accuracy
|
104 |
+
value: 52.20
|
105 |
+
- name: 10-shot
|
106 |
+
type: accuracy
|
107 |
+
value: 52.42
|
108 |
+
|
109 |
+
- task:
|
110 |
+
type: text-generation
|
111 |
+
dataset:
|
112 |
+
name: OpenLLM-Ro/ro_gsm8k
|
113 |
+
type: OpenLLM-Ro/ro_gsm8k
|
114 |
+
metrics:
|
115 |
+
- name: Average accuracy
|
116 |
+
type: accuracy
|
117 |
+
value: 38.87
|
118 |
+
- name: 1-shot
|
119 |
+
type: accuracy
|
120 |
+
value: 28.13
|
121 |
+
- name: 3-shot
|
122 |
+
type: accuracy
|
123 |
+
value: 42.23
|
124 |
+
- name: 5-shot
|
125 |
+
type: accuracy
|
126 |
+
value: 46.25
|
127 |
+
|
128 |
+
- task:
|
129 |
+
type: text-generation
|
130 |
+
dataset:
|
131 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
132 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
133 |
+
metrics:
|
134 |
+
- name: Average accuracy
|
135 |
+
type: accuracy
|
136 |
+
value: 48.67
|
137 |
+
- name: 0-shot
|
138 |
+
type: accuracy
|
139 |
+
value: 48.67
|
140 |
+
|
141 |
+
- task:
|
142 |
+
type: text-generation
|
143 |
+
dataset:
|
144 |
+
name: LaRoSeDa_binary
|
145 |
+
type: LaRoSeDa_binary
|
146 |
+
metrics:
|
147 |
+
- name: Average macro-f1
|
148 |
+
type: macro-f1
|
149 |
+
value: 97.47
|
150 |
+
- name: 0-shot
|
151 |
+
type: macro-f1
|
152 |
+
value: 97.43
|
153 |
+
- name: 1-shot
|
154 |
+
type: macro-f1
|
155 |
+
value: 97.33
|
156 |
+
- name: 3-shot
|
157 |
+
type: macro-f1
|
158 |
+
value: 97.70
|
159 |
+
- name: 5-shot
|
160 |
+
type: macro-f1
|
161 |
+
value: 97.43
|
162 |
+
|
163 |
+
- task:
|
164 |
+
type: text-generation
|
165 |
+
dataset:
|
166 |
+
name: LaRoSeDa_multiclass
|
167 |
+
type: LaRoSeDa_multiclass
|
168 |
+
metrics:
|
169 |
+
- name: Average macro-f1
|
170 |
+
type: macro-f1
|
171 |
+
value: 64.05
|
172 |
+
- name: 0-shot
|
173 |
+
type: macro-f1
|
174 |
+
value: 65.90
|
175 |
+
- name: 1-shot
|
176 |
+
type: macro-f1
|
177 |
+
value: 64.68
|
178 |
+
- name: 3-shot
|
179 |
+
type: macro-f1
|
180 |
+
value: 62.36
|
181 |
+
- name: 5-shot
|
182 |
+
type: macro-f1
|
183 |
+
value: 63.27
|
184 |
+
|
185 |
+
- task:
|
186 |
+
type: text-generation
|
187 |
+
dataset:
|
188 |
+
name: WMT_EN-RO
|
189 |
+
type: WMT_EN-RO
|
190 |
+
metrics:
|
191 |
+
- name: Average bleu
|
192 |
+
type: bleu
|
193 |
+
value: 20.54
|
194 |
+
- name: 0-shot
|
195 |
+
type: bleu
|
196 |
+
value: 7.20
|
197 |
+
- name: 1-shot
|
198 |
+
type: bleu
|
199 |
+
value: 25.68
|
200 |
+
- name: 3-shot
|
201 |
+
type: bleu
|
202 |
+
value: 24.50
|
203 |
+
- name: 5-shot
|
204 |
+
type: bleu
|
205 |
+
value: 24.78
|
206 |
+
|
207 |
+
- task:
|
208 |
+
type: text-generation
|
209 |
+
dataset:
|
210 |
+
name: WMT_RO-EN
|
211 |
+
type: WMT_RO-EN
|
212 |
+
metrics:
|
213 |
+
- name: Average bleu
|
214 |
+
type: bleu
|
215 |
+
value: 21.16
|
216 |
+
- name: 0-shot
|
217 |
+
type: bleu
|
218 |
+
value: 2.59
|
219 |
+
- name: 1-shot
|
220 |
+
type: bleu
|
221 |
+
value: 17.54
|
222 |
+
- name: 3-shot
|
223 |
+
type: bleu
|
224 |
+
value: 30.82
|
225 |
+
- name: 5-shot
|
226 |
+
type: bleu
|
227 |
+
value: 33.67
|
228 |
+
|
229 |
+
- task:
|
230 |
+
type: text-generation
|
231 |
+
dataset:
|
232 |
+
name: XQuAD
|
233 |
+
type: XQuAD
|
234 |
+
metrics:
|
235 |
+
- name: Average exact_match
|
236 |
+
type: exact_match
|
237 |
+
value: 21.45
|
238 |
+
- name: Average f1
|
239 |
+
type: f1
|
240 |
+
value: 37.73
|
241 |
+
- name: 0-shot exact_match
|
242 |
+
type: exact_match
|
243 |
+
value: 3.45
|
244 |
+
- name: 0-shot f1
|
245 |
+
type: f1
|
246 |
+
value: 12.36
|
247 |
+
- name: 1-shot exact_match
|
248 |
+
type: exact_match
|
249 |
+
value: 32.02
|
250 |
+
- name: 1-shot f1
|
251 |
+
type: f1
|
252 |
+
value: 55.70
|
253 |
+
- name: 3-shot exact_match
|
254 |
+
type: exact_match
|
255 |
+
value: 33.78
|
256 |
+
- name: 3-shot f1
|
257 |
+
type: f1
|
258 |
+
value: 54.15
|
259 |
+
- name: 5-shot exact_match
|
260 |
+
type: exact_match
|
261 |
+
value: 16.55
|
262 |
+
- name: 5-shot f1
|
263 |
+
type: f1
|
264 |
+
value: 28.71
|
265 |
+
|
266 |
+
- task:
|
267 |
+
type: text-generation
|
268 |
+
dataset:
|
269 |
+
name: STS
|
270 |
+
type: STS
|
271 |
+
metrics:
|
272 |
+
- name: Average pearson
|
273 |
+
type: pearson
|
274 |
+
value: 76.93
|
275 |
+
- name: Average spearman
|
276 |
+
type: spearman
|
277 |
+
value: 77.08
|
278 |
+
- name: 1-shot pearson
|
279 |
+
type: pearson
|
280 |
+
value: 77.02
|
281 |
+
- name: 1-shot spearman
|
282 |
+
type: spearman
|
283 |
+
value: 77.80
|
284 |
+
- name: 3-shot pearson
|
285 |
+
type: pearson
|
286 |
+
value: 76.93
|
287 |
+
- name: 3-shot spearman
|
288 |
+
type: spearman
|
289 |
+
value: 77.00
|
290 |
+
- name: 5-shot pearson
|
291 |
+
type: pearson
|
292 |
+
value: 76.85
|
293 |
+
- name: 5-shot spearman
|
294 |
+
type: spearman
|
295 |
+
value: 76.45
|
296 |
---
|
297 |
|
|
|
298 |
|
299 |
+
# Model Card for 4-bit RoLlama3.1-8b-Instruct-DPO
|
300 |
|
301 |
+
*Built from [RoLlama3.1-8b-Instruct-DPO](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO), quantized to 4-bit.*
|
302 |
|
303 |
+
This variant of **RoLlama3.1-8b-Instruct-DPO** provides a reduced footprint through 4-bit quantization, aimed at enabling usage on resource-constrained GPUs while preserving a high fraction of the model’s capabilities.
|
304 |
|
305 |
## Model Details
|
306 |
|
307 |
+
## Comparison to 16 bit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
+
It loooks that the effects of the quantization are minimal :
|
310 |
|
311 |
+
| **Task** | **Metric** | **FP16 Original** | **4-bit** | **Absolute Diff.** | **% Change** |
|
312 |
+
|--------------------------|-----------------------|-------------------|-----------------|---------------------|--------------------|
|
313 |
+
| **ARC Challenge** | Avg. Accuracy | 44.84 | 42.74 | -2.10 | -4.68% |
|
314 |
+
| **MMLU** | Avg. Accuracy | 55.06 | 42.27 | -12.79 | -23.23% |
|
315 |
+
| **Winogrande** | Avg. Accuracy | 65.87 | 64.94 | -0.93 | -1.41% |
|
316 |
+
| **Hellaswag** | Avg. Accuracy | 58.67 | 52.39 | -6.28 | -10.70% |
|
317 |
+
| **GSM8K** | Avg. Accuracy | 44.17 | 38.87 | -5.30 | -11.99% |
|
318 |
+
| **TruthfulQA** | Avg. Accuracy | 47.82 | 48.67 | +0.85 | +1.78% |
|
319 |
+
| **LaRoSeDa (binary)** | Macro-F1 | 96.10 | 97.47 | +1.37 | +1.43% |
|
320 |
+
| **LaRoSeDa (multiclass)**| Macro-F1 | 55.37 | 64.05 | +8.68 | +15.68% |
|
321 |
+
| **WMT EN-RO** | BLEU | 21.29 | 20.54 | -0.75 | -3.52% |
|
322 |
+
| **WMT RO-EN** | BLEU | 21.86 | 21.16 | -0.70 | -3.20% |
|
323 |
+
| **XQuAD (avg)** | EM / F1 | 21.58 / 36.54 | 21.45 / 37.73 | ~-0.13 / +1.19 | -0.60% / +3.26% |
|
324 |
+
| **STS (avg)** | Spearman / Pearson | 78.01 / 77.98 | 77.08 / 76.93 | -0.93 / -1.05 | -1.19% / -1.35% |
|
325 |
|
|
|
326 |
|
327 |
+
### Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
+
- **Developed by:** OpenLLM-Ro
|
330 |
+
- **Language(s):** Romanian
|
331 |
+
- **License:** cc-by-nc-4.0
|
332 |
+
- **Quantized from model:** [RoLlama3.1-8b-Instruct-DPO](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO)
|
333 |
+
- **Quantization:** 4-bit
|
334 |
|
335 |
+
Quantization reduces model size and improves inference speed but can lead to small drops in performance. Below is a comprehensive table of the main benchmarks comparing the original full-precision version with the new 4-bit variant.
|
336 |
|
337 |
+
## How to Use
|
338 |
|
339 |
+
```python
|
340 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
341 |
|
342 |
+
model_id = "OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-4bit"
|
343 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
344 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
|
345 |
|
346 |
+
instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
|
347 |
+
chat = [
|
348 |
+
{"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
|
349 |
+
{"role": "user", "content": instruction},
|
350 |
+
]
|
351 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
|
352 |
|
353 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to("cuda")
|
354 |
+
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
|
355 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|