intelpen commited on
Commit
30e1068
·
verified ·
1 Parent(s): 96852f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +335 -179
README.md CHANGED
@@ -1,199 +1,355 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
 
 
 
 
 
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - OpenLLM-Ro/RoLlama3.1-8b-Instruct
7
+ datasets:
8
+ - OpenLLM-Ro/ro_dpo_helpsteer
9
+ model-index:
10
+ - name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-4bit
11
+ results:
12
+ - task:
13
+ type: text-generation
14
+ dataset:
15
+ name: OpenLLM-Ro/ro_arc_challenge
16
+ type: OpenLLM-Ro/ro_arc_challenge
17
+ metrics:
18
+ - name: Average accuracy
19
+ type: accuracy
20
+ value: 42.74
21
+ - name: 0-shot
22
+ type: accuracy
23
+ value: 40.79
24
+ - name: 1-shot
25
+ type: accuracy
26
+ value: 40.36
27
+ - name: 3-shot
28
+ type: accuracy
29
+ value: 43.36
30
+ - name: 5-shot
31
+ type: accuracy
32
+ value: 44.04
33
+ - name: 10-shot
34
+ type: accuracy
35
+ value: 43.87
36
+ - name: 25-shot
37
+ type: accuracy
38
+ value: 44.04
39
+
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: OpenLLM-Ro/ro_mmlu
44
+ type: OpenLLM-Ro/ro_mmlu
45
+ metrics:
46
+ - name: Average accuracy
47
+ type: accuracy
48
+ value: 42.27
49
+ - name: 0-shot
50
+ type: accuracy
51
+ value: 43.23
52
+ - name: 1-shot
53
+ type: accuracy
54
+ value: 42.47
55
+ - name: 3-shot
56
+ type: accuracy
57
+ value: 42.19
58
+ - name: 5-shot
59
+ type: accuracy
60
+ value: 41.19
61
+
62
+ - task:
63
+ type: text-generation
64
+ dataset:
65
+ name: OpenLLM-Ro/ro_winogrande
66
+ type: OpenLLM-Ro/ro_winogrande
67
+ metrics:
68
+ - name: Average accuracy
69
+ type: accuracy
70
+ value: 64.94
71
+ - name: 0-shot
72
+ type: accuracy
73
+ value: 63.14
74
+ - name: 1-shot
75
+ type: accuracy
76
+ value: 64.64
77
+ - name: 3-shot
78
+ type: accuracy
79
+ value: 65.43
80
+ - name: 5-shot
81
+ type: accuracy
82
+ value: 66.54
83
+
84
+ - task:
85
+ type: text-generation
86
+ dataset:
87
+ name: OpenLLM-Ro/ro_hellaswag
88
+ type: OpenLLM-Ro/ro_hellaswag
89
+ metrics:
90
+ - name: Average accuracy
91
+ type: accuracy
92
+ value: 52.39
93
+ - name: 0-shot
94
+ type: accuracy
95
+ value: 52.42
96
+ - name: 1-shot
97
+ type: accuracy
98
+ value: 52.30
99
+ - name: 3-shot
100
+ type: accuracy
101
+ value: 52.60
102
+ - name: 5-shot
103
+ type: accuracy
104
+ value: 52.20
105
+ - name: 10-shot
106
+ type: accuracy
107
+ value: 52.42
108
+
109
+ - task:
110
+ type: text-generation
111
+ dataset:
112
+ name: OpenLLM-Ro/ro_gsm8k
113
+ type: OpenLLM-Ro/ro_gsm8k
114
+ metrics:
115
+ - name: Average accuracy
116
+ type: accuracy
117
+ value: 38.87
118
+ - name: 1-shot
119
+ type: accuracy
120
+ value: 28.13
121
+ - name: 3-shot
122
+ type: accuracy
123
+ value: 42.23
124
+ - name: 5-shot
125
+ type: accuracy
126
+ value: 46.25
127
+
128
+ - task:
129
+ type: text-generation
130
+ dataset:
131
+ name: OpenLLM-Ro/ro_truthfulqa
132
+ type: OpenLLM-Ro/ro_truthfulqa
133
+ metrics:
134
+ - name: Average accuracy
135
+ type: accuracy
136
+ value: 48.67
137
+ - name: 0-shot
138
+ type: accuracy
139
+ value: 48.67
140
+
141
+ - task:
142
+ type: text-generation
143
+ dataset:
144
+ name: LaRoSeDa_binary
145
+ type: LaRoSeDa_binary
146
+ metrics:
147
+ - name: Average macro-f1
148
+ type: macro-f1
149
+ value: 97.47
150
+ - name: 0-shot
151
+ type: macro-f1
152
+ value: 97.43
153
+ - name: 1-shot
154
+ type: macro-f1
155
+ value: 97.33
156
+ - name: 3-shot
157
+ type: macro-f1
158
+ value: 97.70
159
+ - name: 5-shot
160
+ type: macro-f1
161
+ value: 97.43
162
+
163
+ - task:
164
+ type: text-generation
165
+ dataset:
166
+ name: LaRoSeDa_multiclass
167
+ type: LaRoSeDa_multiclass
168
+ metrics:
169
+ - name: Average macro-f1
170
+ type: macro-f1
171
+ value: 64.05
172
+ - name: 0-shot
173
+ type: macro-f1
174
+ value: 65.90
175
+ - name: 1-shot
176
+ type: macro-f1
177
+ value: 64.68
178
+ - name: 3-shot
179
+ type: macro-f1
180
+ value: 62.36
181
+ - name: 5-shot
182
+ type: macro-f1
183
+ value: 63.27
184
+
185
+ - task:
186
+ type: text-generation
187
+ dataset:
188
+ name: WMT_EN-RO
189
+ type: WMT_EN-RO
190
+ metrics:
191
+ - name: Average bleu
192
+ type: bleu
193
+ value: 20.54
194
+ - name: 0-shot
195
+ type: bleu
196
+ value: 7.20
197
+ - name: 1-shot
198
+ type: bleu
199
+ value: 25.68
200
+ - name: 3-shot
201
+ type: bleu
202
+ value: 24.50
203
+ - name: 5-shot
204
+ type: bleu
205
+ value: 24.78
206
+
207
+ - task:
208
+ type: text-generation
209
+ dataset:
210
+ name: WMT_RO-EN
211
+ type: WMT_RO-EN
212
+ metrics:
213
+ - name: Average bleu
214
+ type: bleu
215
+ value: 21.16
216
+ - name: 0-shot
217
+ type: bleu
218
+ value: 2.59
219
+ - name: 1-shot
220
+ type: bleu
221
+ value: 17.54
222
+ - name: 3-shot
223
+ type: bleu
224
+ value: 30.82
225
+ - name: 5-shot
226
+ type: bleu
227
+ value: 33.67
228
+
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ name: XQuAD
233
+ type: XQuAD
234
+ metrics:
235
+ - name: Average exact_match
236
+ type: exact_match
237
+ value: 21.45
238
+ - name: Average f1
239
+ type: f1
240
+ value: 37.73
241
+ - name: 0-shot exact_match
242
+ type: exact_match
243
+ value: 3.45
244
+ - name: 0-shot f1
245
+ type: f1
246
+ value: 12.36
247
+ - name: 1-shot exact_match
248
+ type: exact_match
249
+ value: 32.02
250
+ - name: 1-shot f1
251
+ type: f1
252
+ value: 55.70
253
+ - name: 3-shot exact_match
254
+ type: exact_match
255
+ value: 33.78
256
+ - name: 3-shot f1
257
+ type: f1
258
+ value: 54.15
259
+ - name: 5-shot exact_match
260
+ type: exact_match
261
+ value: 16.55
262
+ - name: 5-shot f1
263
+ type: f1
264
+ value: 28.71
265
+
266
+ - task:
267
+ type: text-generation
268
+ dataset:
269
+ name: STS
270
+ type: STS
271
+ metrics:
272
+ - name: Average pearson
273
+ type: pearson
274
+ value: 76.93
275
+ - name: Average spearman
276
+ type: spearman
277
+ value: 77.08
278
+ - name: 1-shot pearson
279
+ type: pearson
280
+ value: 77.02
281
+ - name: 1-shot spearman
282
+ type: spearman
283
+ value: 77.80
284
+ - name: 3-shot pearson
285
+ type: pearson
286
+ value: 76.93
287
+ - name: 3-shot spearman
288
+ type: spearman
289
+ value: 77.00
290
+ - name: 5-shot pearson
291
+ type: pearson
292
+ value: 76.85
293
+ - name: 5-shot spearman
294
+ type: spearman
295
+ value: 76.45
296
  ---
297
 
 
298
 
299
+ # Model Card for 4-bit RoLlama3.1-8b-Instruct-DPO
300
 
301
+ *Built from [RoLlama3.1-8b-Instruct-DPO](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO), quantized to 4-bit.*
302
 
303
+ This variant of **RoLlama3.1-8b-Instruct-DPO** provides a reduced footprint through 4-bit quantization, aimed at enabling usage on resource-constrained GPUs while preserving a high fraction of the model’s capabilities.
304
 
305
  ## Model Details
306
 
307
+ ## Comparison to 16 bit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308
 
309
+ It loooks that the effects of the quantization are minimal :
310
 
311
+ | **Task** | **Metric** | **FP16 Original** | **4-bit** | **Absolute Diff.** | **% Change** |
312
+ |--------------------------|-----------------------|-------------------|-----------------|---------------------|--------------------|
313
+ | **ARC Challenge** | Avg. Accuracy | 44.84 | 42.74 | -2.10 | -4.68% |
314
+ | **MMLU** | Avg. Accuracy | 55.06 | 42.27 | -12.79 | -23.23% |
315
+ | **Winogrande** | Avg. Accuracy | 65.87 | 64.94 | -0.93 | -1.41% |
316
+ | **Hellaswag** | Avg. Accuracy | 58.67 | 52.39 | -6.28 | -10.70% |
317
+ | **GSM8K** | Avg. Accuracy | 44.17 | 38.87 | -5.30 | -11.99% |
318
+ | **TruthfulQA** | Avg. Accuracy | 47.82 | 48.67 | +0.85 | +1.78% |
319
+ | **LaRoSeDa (binary)** | Macro-F1 | 96.10 | 97.47 | +1.37 | +1.43% |
320
+ | **LaRoSeDa (multiclass)**| Macro-F1 | 55.37 | 64.05 | +8.68 | +15.68% |
321
+ | **WMT EN-RO** | BLEU | 21.29 | 20.54 | -0.75 | -3.52% |
322
+ | **WMT RO-EN** | BLEU | 21.86 | 21.16 | -0.70 | -3.20% |
323
+ | **XQuAD (avg)** | EM / F1 | 21.58 / 36.54 | 21.45 / 37.73 | ~-0.13 / +1.19 | -0.60% / +3.26% |
324
+ | **STS (avg)** | Spearman / Pearson | 78.01 / 77.98 | 77.08 / 76.93 | -0.93 / -1.05 | -1.19% / -1.35% |
325
 
 
326
 
327
+ ### Model Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328
 
329
+ - **Developed by:** OpenLLM-Ro
330
+ - **Language(s):** Romanian
331
+ - **License:** cc-by-nc-4.0
332
+ - **Quantized from model:** [RoLlama3.1-8b-Instruct-DPO](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO)
333
+ - **Quantization:** 4-bit
334
 
335
+ Quantization reduces model size and improves inference speed but can lead to small drops in performance. Below is a comprehensive table of the main benchmarks comparing the original full-precision version with the new 4-bit variant.
336
 
337
+ ## How to Use
338
 
339
+ ```python
340
+ from transformers import AutoTokenizer, AutoModelForCausalLM
341
 
342
+ model_id = "OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-4bit"
343
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
344
+ model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
345
 
346
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
347
+ chat = [
348
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
349
+ {"role": "user", "content": instruction},
350
+ ]
351
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
352
 
353
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to("cuda")
354
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
355
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))