SunSiShining commited on
Commit
af152ee
1 Parent(s): 1bc45b3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -0
README.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ This model is ANCE-Tele trained on MS MARCO. The training details and evaluation results are as follows:
6
+
7
+ |Model|Pretrain Model|Train w/ Marco Title|Marco Dev MRR@10|BEIR Avg NDCG@10|
8
+ |:----|:----|:----|:----|:----|
9
+ |ANCE-Tele|[cocodr-base](https://huggingface.co/OpenMatch/cocodr-base)|w/o|37.3|44.2|
10
+
11
+ |BERI Dataset|NDCG@10|
12
+ |:----|:----|
13
+ |TREC-COVID|77.4|
14
+ |NFCorpus|34.4 |
15
+ |FiQA|29.0 |
16
+ |ArguAna|45.6 |
17
+ |Touché-2020|22.3 |
18
+ |Quora|85.8 |
19
+ |SCIDOCS|14.6 |
20
+ |SciFact|71.0 |
21
+ |NQ|50.5 |
22
+ |HotpotQA|58.8 |
23
+ |Signal-1M|27.2 |
24
+ |TREC-NEWS|34.7 |
25
+ |DBPedia-entity|36.2 |
26
+ |Fever|71.4 |
27
+ |Climate-Fever|17.9 |
28
+ |BioASQ|42.1 |
29
+ |Robust04|41.4 |
30
+ |CQADupStack|34.9 |
31
+
32
+
33
+ The implementation is the same as our EMNLP 2022 paper ["Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives"](https://arxiv.org/pdf/2210.17167.pdf). The associated GitHub repository is available at https://github.com/OpenMatch/ANCE-Tele.
34
+
35
+ ```
36
+ @inproceedings{sun2022ancetele,
37
+ title={Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives},
38
+ author={Si, Sun and Chenyan, Xiong and Yue, Yu and Arnold, Overwijk and Zhiyuan, Liu and Jie, Bao},
39
+ booktitle={Proceedings of EMNLP 2022},
40
+ year={2022}
41
+ }
42
+ ```