--- license: apache-2.0 dataset: yield tags: - finetuned - multimodal inference: false --- These are weights for a version of `checkpoints/stage2/llava-moleculestm-vicuna-7b-v1.5-pretrain_all` finetuned for multimodal applications. ### Modalities * Molecule2DModality (use `` in text and provide `molecules` ### Usage GitHub: https://github.com/IDEA-XL/PRESTO (includes training scripts and basic inference server) ### Dataset yield (9515 examples) ### Training Device(s) ``` name, pci.bus_id, vbios_version NVIDIA RTX A6000, 00000000:01:00.0, 94.02.5C.00.02 NVIDIA RTX A6000, 00000000:25:00.0, 94.02.5C.00.02 NVIDIA RTX A6000, 00000000:41:00.0, 94.02.5C.00.02 NVIDIA RTX A6000, 00000000:61:00.0, 94.02.5C.00.02 NVIDIA RTX A6000, 00000000:81:00.0, 94.02.5C.00.02 NVIDIA RTX A6000, 00000000:A1:00.0, 94.02.5C.00.02 NVIDIA RTX A6000, 00000000:C1:00.0, 94.02.5C.00.02 NVIDIA RTX A6000, 00000000:E1:00.0, 94.02.5C.00.02 ``` ### Model ``` LlamaLMMForCausalLM.model = LlamaLMMForCausalLM( (model): LlamaLMMModel( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaSdpaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (act_fn): SiLU() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() (molecule_2d_lmm_projector): _MLPVectorProjector( (mlp): Sequential( (0): Linear(in_features=300, out_features=4096, bias=True) (1): GELU(approximate='none') (2): Linear(in_features=4096, out_features=4096, bias=True) ) ) ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ```