HGRN-150M / modeling_hgrn.py
OpenNLPLab's picture
Publish code & model
d73e1e2
# coding=utf-8
""" PyTorch Hgrn model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from dataclasses import dataclass
import torch.nn.functional as F
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from transformers.utils import ModelOutput
from .configuration_hgrn import HgrnConfig
from .utils import print_module, get_activation_fn, get_norm_fn, print_params, logging_info
from .norm import SimpleRMSNorm
from hgru import Hgru1d
from einops import rearrange
import numpy as np
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "HgrnConfig"
class GLU(nn.Module):
def __init__(self, d1, d2, act_fun, bias=False):
super().__init__()
# get local varables
params = locals()
# print params
print_params(**params)
self.l1 = nn.Linear(d1, d2, bias=bias)
self.l2 = nn.Linear(d1, d2, bias=bias)
self.l3 = nn.Linear(d2, d1, bias=bias)
self.act_fun = get_activation_fn(act_fun)
def forward(self, x):
o1 = self.act_fun(self.l1(x))
o2 = self.l2(x)
output = o1 * o2
output = self.l3(output)
return output
class HgrnDecoderLayer(nn.Module):
def __init__(
self, config: HgrnConfig
):
super().__init__()
self.embed_dim = config.decoder_embed_dim
##### token mixer
self.token_mixer = Hgru1d(
self.embed_dim,
act_fun=config.act_fun,
causal=config.causal,
use_triton=config.use_triton,
bias=config.bias,
)
self.token_norm = get_norm_fn(config.norm_type)(self.embed_dim)
##### channel mixer
self.glu_act = config.glu_act
self.glu_dim = config.glu_dim
self.channel_mixer = GLU(self.embed_dim, self.glu_dim, self.glu_act, bias=config.bias)
self.channel_norm = get_norm_fn(config.norm_type)(self.embed_dim)
def forward(
self,
x,
padding_mask: Optional[torch.Tensor] = None,
lower_bound: Optional[torch.Tensor] = None,
):
# current does not support padding_mask!
x = self.token_mixer(self.token_norm(x), lower_bound) + x
x = self.channel_mixer(self.channel_norm(x)) + x
outputs = x
return outputs, None
HGRN_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`HgrnConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
HGRN_START_DOCSTRING,
)
class HgrnPreTrainedModel(PreTrainedModel):
config_class = HgrnConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["HgrnDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, HgrnModel):
module.gradient_checkpointing = value
@dataclass
class HgrnModelOutputWithPast(ModelOutput):
last_hidden_state: torch.FloatTensor = None
cache_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
HGRN_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
HGRN_START_DOCSTRING,
)
class HgrnModel(HgrnPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`HgrnDecoderLayer`]
Args:
config: HgrnConfig
"""
def __init__(self, config: HgrnConfig):
super().__init__(config)
# hf origin
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.gradient_checkpointing = False
# params
self.embed_tokens = nn.Embedding(config.vocab_size, config.decoder_embed_dim, self.padding_idx)
self.layers = nn.ModuleList([HgrnDecoderLayer(config) for i in range(config.decoder_layers)])
self.final_norm = get_norm_fn(config.norm_type)(config.decoder_embed_dim)
self.embed_dim = config.decoder_embed_dim
self.embed_scale = 1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim)
self.num_layers = config.decoder_layers
self.lower_bounds = nn.Parameter(torch.ones(self.num_layers, self.embed_dim), requires_grad=True)
# Initialize weights and apply final processing
self.post_init()
def extra_repr(self):
return print_module(self)
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(HGRN_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
padding_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
if not self.training and padding_mask != None and padding_mask.eq(self.padding_idx):
raise ValueError("During the inference stage, attn_padding_mask should be either None or should not include the pad token.")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
# !!! use embed_scale
inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)
hidden_states = inputs_embeds
cache_values = ()
# lower bound
lower_bounds = self.lower_bounds
lower_bounds = F.softmax(lower_bounds, dim=0)
lower_bounds = torch.cumsum(lower_bounds, dim=0)
lower_bounds -= lower_bounds[0, ...].clone()
# b, n, d -> n, b, d
hidden_states = hidden_states.transpose(1, 0)
for idx, layer in enumerate(self.layers):
lower_bound = lower_bounds[idx]
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer),
hidden_states,
padding_mask,
lower_bound,
)
else:
layer_outputs = layer(
hidden_states,
padding_mask,
lower_bound,
)
hidden_states = layer_outputs[0]
# tbd
cache_values += (layer_outputs[1],)
hidden_states = self.final_norm(hidden_states)
# n, b, d -> b, n, d
hidden_states = hidden_states.transpose(1, 0)
if not return_dict:
return tuple(v for v in [hidden_states, cache_values] if v is not None)
return HgrnModelOutputWithPast(
last_hidden_state=hidden_states,
cache_values=cache_values
)
class HgrnForCausalLM(HgrnPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.model = HgrnModel(config)
# the lm_head weight is automatically tied to the embed tokens weight
self.lm_head = nn.Linear(config.decoder_embed_dim, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(HGRN_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, HgrnForCausalLM
>>> model = HgrnForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
padding_mask=attention_mask,
inputs_embeds=inputs_embeds,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.cache_values,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attn_padding_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
@add_start_docstrings(
"""
The LLaMa Model transformer with a sequence classification head on top (linear layer).
[`HgrnForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
HGRN_START_DOCSTRING,
)
class HgrnForSequenceClassification(HgrnPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = HgrnModel(config)
self.score = nn.Linear(config.decoder_embed_dim, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(HGRN_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
padding_mask=attention_mask,
inputs_embeds=inputs_embeds,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
hidden_states=outputs.hidden_states,
)