|
import logging |
|
import os |
|
import sys |
|
|
|
import torch |
|
from torch import nn |
|
import torch.distributed as dist |
|
import torch.nn.functional as F |
|
|
|
from .norm import SimpleRMSNorm as SimpleRMSNormTorch |
|
from .srmsnorm_triton import SimpleRMSNorm as SimpleRMSNormTriton |
|
|
|
use_triton = eval(os.environ.get("use_triton", default="True")) |
|
debug = eval(os.environ.get("debug", default="False")) |
|
|
|
if use_triton: |
|
SimpleRMSNorm = SimpleRMSNormTriton |
|
else: |
|
SimpleRMSNorm = SimpleRMSNormTorch |
|
|
|
logging.basicConfig( |
|
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S", |
|
level=os.environ.get("LOGLEVEL", "INFO").upper(), |
|
stream=sys.stdout, |
|
) |
|
logger = logging.getLogger("print_config") |
|
|
|
BASE_DIM = 256 |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def logging_info(string): |
|
if is_main_process(): |
|
logger.info(string) |
|
|
|
|
|
def print_params(**kwargs): |
|
if is_main_process(): |
|
logger.info(f"start print config of {kwargs['__class__']}") |
|
for key in kwargs: |
|
if key in ["__class__", "self"]: |
|
continue |
|
logger.info(f"{key}: {kwargs[key]}") |
|
logger.info(f"end print config of {kwargs['__class__']}") |
|
|
|
|
|
def print_config(config): |
|
if is_main_process(): |
|
logger.info(f"start print config of {config['__class__']}") |
|
for key in config: |
|
if key in ["__class__", "self"]: |
|
continue |
|
logger.info(f"{key}: {config[key]}") |
|
logger.info(f"end print config of {config['__class__']}") |
|
|
|
|
|
def print_module(module): |
|
named_modules = set() |
|
for p in module.named_modules(): |
|
named_modules.update([p[0]]) |
|
named_modules = list(named_modules) |
|
|
|
string_repr = "" |
|
for p in module.named_parameters(): |
|
name = p[0].split(".")[0] |
|
if name not in named_modules: |
|
string_repr = (string_repr + "(" + name + "): " + "Tensor(" + |
|
str(tuple(p[1].shape)) + ", requires_grad=" + |
|
str(p[1].requires_grad) + ")\n") |
|
|
|
return string_repr.rstrip("\n") |
|
|
|
|
|
def get_activation_fn(activation): |
|
if debug: |
|
logger.info(f"activation: {activation}") |
|
if activation == "gelu": |
|
return F.gelu |
|
elif activation == "relu": |
|
return F.relu |
|
elif activation == "elu": |
|
return F.elu |
|
elif activation == "sigmoid": |
|
return F.sigmoid |
|
elif activation == "exp": |
|
|
|
def f(x): |
|
with torch.no_grad(): |
|
x_max = torch.max(x, dim=-1, keepdims=True).values |
|
y = torch.exp(x - x_max) |
|
|
|
return y |
|
|
|
return f |
|
elif activation == "leak": |
|
return F.leaky_relu |
|
elif activation == "1+elu": |
|
|
|
def f(x): |
|
return 1 + F.elu(x) |
|
|
|
return f |
|
elif activation == "2+elu": |
|
|
|
def f(x): |
|
return 2 + F.elu(x) |
|
|
|
return f |
|
elif activation == "silu" or activation == "swish": |
|
return F.silu |
|
elif activation == "sine": |
|
return torch.sin |
|
else: |
|
logger.info( |
|
f"activation: does not support {activation}, use Identity!!!") |
|
return lambda x: x |
|
|
|
|
|
def get_norm_fn(norm_type): |
|
if norm_type == "simplermsnorm": |
|
return SimpleRMSNorm |
|
else: |
|
return nn.LayerNorm |
|
|
|
|
|
def convert_to_multiple_of_base(x): |
|
return BASE_DIM * ((x + BASE_DIM - 1) // BASE_DIM) |
|
|