File size: 34,607 Bytes
80b34f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
#    Copyright 2024 OpenNLPLab
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

# coding=utf-8
""" PyTorch Transnormer model."""
import math
import os
from typing import List, Optional, Tuple, Union

from einops import rearrange
import numpy as np
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)

from .configuration_transnormer import TransnormerConfig
from .norm import SimpleRMSNorm as SimpleRMSNorm_torch
from .srmsnorm_triton import SimpleRMSNorm as SimpleRMSNorm_triton
from .utils import (
    get_activation_fn,
    get_norm_fn,
    logging_info,
    print_module,
    print_params,
)

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "TransnormerConfig"

# TODO: fix environment: https://huggingface.co/OpenNLPLab/TransNormerLLM-7B/discussions/1
use_triton = eval(os.environ.get("use_triton", default="True"))
debug = eval(os.environ.get("debug", default="False"))
do_eval = eval(os.environ.get("do_eval", default="False"))
eval_and_not_generate = eval(
    os.environ.get("eval_and_not_generate", default="False"))
BLOCK = 256

if use_triton:
    try:
        from .lightning_attention2 import lightning_attention

        has_lightning_attention = True
    except (ImportError, ModuleNotFoundError):
        has_lightning_attention = False
else:
    has_lightning_attention = False

if debug:
    logger.info(f"Use triton: {use_triton}")
    logger.info(f"Use lightning attention: {has_lightning_attention}")
    logger.info(f"Debug mode: {debug}, {type(debug)}")

if not has_lightning_attention:

    def linear_attention(q, k, v, attn_mask):
        energy = torch.einsum("... n d, ... m d -> ... n m", q, k)
        energy = energy * attn_mask
        output = torch.einsum("... n m, ... m d -> ... n d", energy, v)

        return output


########## start Transnormer
##### Linearized Relative Positional Encoding: https://openreview.net/forum?id=xoLyps2qWc&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
class Lrpe(nn.Module):

    def __init__(
        self,
        num_heads=8,
        embed_dim=64,
    ):
        super().__init__()
        d = num_heads * embed_dim

        self.index = torch.empty(0)
        self.theta = nn.Parameter(10000**(-2 / d * torch.arange(d)).reshape(
            num_heads, 1, -1))

    def extra_repr(self):
        return print_module(self)

    def forward(self, x, offset=0):
        # x: b, h, n, d
        # offset: for k, v cache
        n = x.shape[-2]
        if self.index.shape[0] < n:
            self.index = torch.arange(n).reshape(1, -1, 1).to(x)
        index = self.index[:, :n] + offset
        theta = self.theta * index
        x = torch.concat([x * torch.cos(theta), x * torch.sin(theta)], dim=-1)

        return x


class GLU(nn.Module):

    def __init__(self, d1, d2, bias=False):
        super().__init__()
        if debug:
            # get local varables
            params = locals()
            # print params
            print_params(**params)

        self.l1 = nn.Linear(d1, d2, bias=bias)
        self.l2 = nn.Linear(d1, d2, bias=bias)
        self.l3 = nn.Linear(d2, d1, bias=bias)

    def forward(self, x):
        o1 = self.l1(x)
        o2 = self.l2(x)
        output = o1 * o2
        output = self.l3(output)

        return output


class NormLinearAttention(nn.Module):

    def __init__(
        self,
        embed_dim,
        hidden_dim,
        num_heads,
        linear_act_fun="silu",
        norm_type="simplermsnorm",
        linear_use_lrpe=False,
        bias=False,
    ):
        super().__init__()
        if debug:
            # get local varables
            params = locals()
            # print params
            print_params(**params)

        self.out_proj = nn.Linear(hidden_dim, embed_dim, bias=bias)
        self.act = get_activation_fn(linear_act_fun)
        self.num_heads = num_heads
        self.embed_dim = embed_dim
        self.head_dim = self.embed_dim // self.num_heads
        self.norm = get_norm_fn(norm_type)(hidden_dim)

        self.linear_use_lrpe = linear_use_lrpe
        if self.linear_use_lrpe:
            self.lrpe = Lrpe(
                num_heads=self.num_heads,
                embed_dim=self.head_dim,
            )

        self.qkvu_proj = nn.Linear(embed_dim, 4 * hidden_dim, bias=bias)

        # for inference only
        self.offset = 0

    def forward(
        self,
        x,
        attn_mask: Optional[torch.Tensor] = None,  # (b, h, n, m)
        attn_padding_mask: Optional[torch.Tensor] = None,  # (b, m)
        output_attentions: bool = False,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        use_cache: bool = False,
        slope_rate: Optional[torch.Tensor] = None,
    ):
        if (not self.training) and (not do_eval):
            return self.inference(
                x,
                attn_mask,
                attn_padding_mask,
                output_attentions,
                past_key_value,
                use_cache,
                slope_rate,
            )
        # x: b n d
        n = x.shape[-2]
        # linear map
        q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
        # reshape
        q, k, v = map(
            lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
            [q, k, v])
        # act
        q = self.act(q)
        k = self.act(k)

        q_offset = 0
        # lrpe relys on position, get cache first
        if past_key_value is not None:
            # reuse k, v, for evaluation only
            k = torch.cat([past_key_value[0], k], dim=-2)
            v = torch.cat([past_key_value[1], v], dim=-2)
            q_offset = past_key_value[0].shape[-2]

        past_key_value = (k, v) if use_cache else None

        # lrpe
        if self.linear_use_lrpe:
            q = self.lrpe(q, offset=q_offset)
            k = self.lrpe(k, offset=q_offset)

        if attn_mask == None:
            attn_mask = (torch.tril(torch.ones(n, n))).to(q)

        if attn_padding_mask is not None:
            v = v.masked_fill(
                (1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(
                    torch.bool), 0)

        if not has_lightning_attention:
            if slope_rate != None:
                attn_mask = torch.exp(slope_rate * attn_mask)
            output = linear_attention(q, k, v, attn_mask)
        else:
            output = lightning_attention(q, k, v, True,
                                         slope_rate.squeeze(-1).squeeze(-1))

        # reshape
        output = rearrange(output, "b h n d -> b n (h d)")
        # normalize
        output = self.norm(output)
        # gate
        output = u * output
        # outproj
        output = self.out_proj(output)

        if not output_attentions:
            attn_weights = None
        else:
            attn_weights = torch.einsum("... n d, ... m d -> ... n m", q, k)

        return output, attn_weights, past_key_value

    def inference(
            self,
            x,
            attn_mask: Optional[torch.Tensor] = None,  # (b, h, n, m)
            attn_padding_mask: Optional[torch.Tensor] = None,  # (b, m)
            output_attentions: bool = False,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            use_cache: bool = False,
            slope_rate: Optional[torch.Tensor] = None,  # (h, 1, 1)
    ):
        # x: b n d
        n = x.shape[-2]
        # linear map
        q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
        # reshape
        q, k, v = map(
            lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
            [q, k, v])
        # act
        q = self.act(q)
        k = self.act(k)

        # rpe
        if self.linear_use_lrpe:
            q = self.lrpe(q, offset=self.offset)
            k = self.lrpe(k, offset=self.offset)

        if past_key_value == None:
            self.offset = q.shape[-2]
        else:
            self.offset += 1

        ratio = torch.exp(-slope_rate)

        # only use for the first time
        if past_key_value == None:
            slope_rate = slope_rate.to(torch.float32)
            if attn_padding_mask is not None:
                v = v.masked_fill(
                    (1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(
                        torch.bool), 0)
            NUM_BLOCK = (n + BLOCK - 1) // BLOCK
            b, h, n, d = q.shape
            e = v.shape[-1]
            # other
            array = torch.arange(BLOCK).to(q) + 1  ## !!!! important
            q_decay = torch.exp(-slope_rate * array.reshape(-1, 1))
            k_decay = torch.exp(-slope_rate * (BLOCK - array.reshape(-1, 1)))
            index = array[:, None] - array[None, :]
            s_index = slope_rate * index[
                None,
                None,
            ]
            s_index = torch.where(index >= 0, -s_index, float("-inf"))
            diag_decay = torch.exp(s_index)

            kv = torch.zeros(b, h, d, e).to(torch.float32).to(q.device)
            output = torch.empty((b, h, n, e), dtype=q.dtype, device=q.device)
            for i in range(NUM_BLOCK):
                si = i * BLOCK
                ei = min(si + BLOCK, n)
                m = ei - si

                qi = q[:, :, si:ei].contiguous()
                ki = k[:, :, si:ei].contiguous()
                vi = v[:, :, si:ei].contiguous()
                qkv_none_diag = torch.matmul(qi * q_decay[:, :m],
                                             kv).to(torch.float32)

                # diag
                qk = torch.matmul(qi, ki.transpose(-1, -2)).to(
                    torch.float32) * diag_decay[:, :, :m, :m]
                qkv_diag = torch.matmul(qk, vi.to(torch.float32))
                block_decay = torch.exp(-slope_rate * m)
                output[:, :, si:ei] = qkv_none_diag + qkv_diag
                kv = block_decay * kv + torch.matmul(
                    (ki * k_decay[:, -m:]).transpose(-1, -2).to(vi.dtype), vi)
        else:
            kv = past_key_value

            output = []
            for i in range(n):
                kv = ratio * kv + torch.einsum(
                    "... n d, ... n e -> ... d e",
                    k[:, :, i:i + 1],
                    v[:, :, i:i + 1],
                )
                qkv = torch.einsum("... n e, ... e d -> ... n d", q[:, :,
                                                                    i:i + 1],
                                   kv.to(q.dtype))
                output.append(qkv)
            output = torch.concat(output, dim=-2)

        # reshape
        output = rearrange(output, "b h n d -> b n (h d)")
        # normalize
        output = self.norm(output)
        # gate
        output = u * output
        # outproj
        output = self.out_proj(output)

        attn_weights = None

        return output, attn_weights, kv


class TransnormerDecoderLayer(nn.Module):

    def __init__(self, config: TransnormerConfig):
        super().__init__()
        self.embed_dim = config.decoder_embed_dim
        ##### normalize
        norm_type = config.norm_type
        if debug:
            logging_info(f"Decoder Norm Type: {norm_type}")
        self.token_norm = get_norm_fn(norm_type)(self.embed_dim)
        self.channel_norm = get_norm_fn(norm_type)(self.embed_dim)

        ##### token mixer
        self.token_mixer = self.build_token_mixer(
            self.embed_dim,
            config,
        )

        ##### channel mixer
        self.glu_dim = config.glu_dim
        if self.glu_dim == -1:
            self.glu_dim = self.embed_dim
        bias = config.bias
        self.channel_mixer = GLU(self.embed_dim, self.glu_dim, bias)

    def build_token_mixer(self, embed_dim, config):
        return NormLinearAttention(
            embed_dim=embed_dim,
            hidden_dim=config.hidden_dim,
            num_heads=config.decoder_attention_heads,
            linear_act_fun=config.linear_act_fun,
            norm_type=config.norm_type,
            linear_use_lrpe=config.linear_use_lrpe,
            bias=config.bias,
        )

    def residual_connection(self, x, residual):
        return residual + x

    def forward(
            self,
            x,
            attn_mask: Optional[torch.Tensor] = None,
            attn_padding_mask: Optional[torch.Tensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: Optional[bool] = False,
            use_cache: Optional[bool] = False,
            slope_rate: Optional[torch.Tensor] = None,  # (h, 1, 1)
    ):
        residual = x
        x = self.token_norm(x)
        x, self_attn_weights, present_key_value = self.token_mixer(
            x=x,
            attn_mask=attn_mask,
            attn_padding_mask=attn_padding_mask,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            slope_rate=slope_rate,
        )
        x = self.residual_connection(x, residual)

        residual = x
        x = self.channel_norm(x)
        x = self.channel_mixer(x)
        x = self.residual_connection(x, residual)

        outputs = (x, )

        if output_attentions:
            outputs += (self_attn_weights, )

        if use_cache:
            outputs += (present_key_value, )

        return outputs


TRANSNORMER_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`TransnormerConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(TRANSNORMER_START_DOCSTRING, )
class TransnormerPreTrainedModel(PreTrainedModel):
    config_class = TransnormerConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["TransnormerDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, TransnormerModel):
            module.gradient_checkpointing = value


TRANSNORMER_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attn_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attn_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(TRANSNORMER_START_DOCSTRING, )
class TransnormerModel(TransnormerPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TransnormerDecoderLayer`]

    Args:
        config: TransnormerConfig
    """

    def __init__(self, config: TransnormerConfig):
        super().__init__(config)
        # hf origin
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.gradient_checkpointing = False
        # mask
        self._linear_attn_mask = torch.empty(0)
        # config
        self.linear_use_lrpe_list = config.linear_use_lrpe_list
        self.num_layers = config.decoder_layers
        # h, 1, 1
        self.slopes = self._build_slope_tensor(config.decoder_attention_heads)

        # params
        self.embed_tokens = nn.Embedding(config.vocab_size,
                                         config.decoder_embed_dim,
                                         self.padding_idx)
        self.layers = nn.ModuleList([])
        for i in range(config.decoder_layers):
            if len(self.linear_use_lrpe_list) > 0:
                config.linear_use_lrpe = self.linear_use_lrpe_list[i]
            self.layers.append(TransnormerDecoderLayer(config))

        self.final_norm = get_norm_fn(config.norm_type)(
            config.decoder_embed_dim)
        self.embed_dim = config.decoder_embed_dim
        self.embed_scale = (1.0 if config.no_scale_embedding else math.sqrt(
            self.embed_dim))

        # Initialize weights and apply final processing
        self.post_init()

    @staticmethod
    def _build_slope_tensor(n_attention_heads: int):

        def get_slopes(n):

            def get_slopes_power_of_2(n):
                start = 2**(-(2**-(math.log2(n) - 3)))
                ratio = start
                return [start * ratio**i for i in range(n)]

            if math.log2(n).is_integer():
                return get_slopes_power_of_2(
                    n
                )  # In the paper, we only train models that have 2^a heads for some a. This function has
            else:  # some good properties that only occur when the input is a power of 2. To maintain that even
                closest_power_of_2 = 2**math.floor(
                    math.log2(n)
                )  # when the number of heads is not a power of 2, we use this workaround.
                return (get_slopes_power_of_2(closest_power_of_2) + get_slopes(
                    2 * closest_power_of_2)[0::2][:n - closest_power_of_2])

        # h, 1, 1
        slopes = torch.tensor(get_slopes(n_attention_heads)).reshape(
            n_attention_heads, 1, 1)

        return slopes

    def extra_repr(self):
        return print_module(self)

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def _prepare_decoder_linear_attn_mask(self, input_shape, inputs_embeds,
                                          past_key_values_length):
        bsz, tgt_len = input_shape
        src_len = tgt_len + past_key_values_length

        def power_log(x):
            return 2**(math.ceil(math.log(x, 2)))

        n = power_log(max(tgt_len, src_len))
        if self._linear_attn_mask.shape[-1] < n:

            def get_mask(n):
                mask = torch.triu(
                    torch.zeros(n, n).float().fill_(float("-inf")), 1)
                # no slope version
                # -n, ..., -2, -1, 0
                for i in range(n):
                    x = torch.arange(i + 1)
                    y = x
                    mask[i, :i + 1] = -torch.flip(y, [0])

                return mask

            arr = []
            for slope in self.slopes:
                arr.append(get_mask(n))
            self._linear_attn_mask = torch.stack(arr, dim=0).to(inputs_embeds)

        linear_attn_mask = self._linear_attn_mask[:, -tgt_len:, -src_len:]
        num_heads = linear_attn_mask.shape[0]

        return linear_attn_mask[None, :, :, :].expand(bsz, num_heads, tgt_len,
                                                      src_len)

    @add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attn_padding_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = (output_attentions if output_attentions is not None
                             else self.config.output_attentions)
        output_hidden_states = (output_hidden_states
                                if output_hidden_states is not None else
                                self.config.output_hidden_states)
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = (return_dict if return_dict is not None else
                       self.config.use_return_dict)

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
            )
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError(
                "You have to specify either decoder_input_ids or decoder_inputs_embeds"
            )

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[-2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if inputs_embeds is None:
            # !!! use embed_scale
            inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        ##### norm linear layers
        linear_attn_padding_mask = attn_padding_mask
        linear_attn_mask = self._prepare_decoder_linear_attn_mask(
            (batch_size, seq_length), inputs_embeds, past_key_values_length)

        slope_rates = [
            self.slopes.to(input_ids.device) for _ in range(self.num_layers)
        ]

        for idx, layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states, )

            past_key_value = (past_key_values[idx]
                              if past_key_values is not None else None)

            slope_rate = slope_rates[idx]
            slope_rate = slope_rate * (1 - idx / (self.num_layers - 1) + 1e-5)
            mask = linear_attn_mask

            layer_outputs = layer(
                hidden_states,
                attn_mask=mask,
                attn_padding_mask=linear_attn_padding_mask,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                slope_rate=slope_rate,
            )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (
                    layer_outputs[2 if output_attentions else 1], )

            if output_attentions:
                all_self_attns += (layer_outputs[1], )

        hidden_states = self.final_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states, )

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v for v in
                [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class TransnormerForCausalLM(TransnormerPreTrainedModel):

    def __init__(self, config):
        super().__init__(config)
        self.model = TransnormerModel(config)
        if debug:
            logging_info(self.model)

        # the lm_head weight is automatically tied to the embed tokens weight
        self.lm_head = nn.Linear(config.decoder_embed_dim,
                                 config.vocab_size,
                                 bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast,
                               config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, TransnormerForCausalLM

        >>> model = TransnormerForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

        >>> prompt = "Hey, are you consciours? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
        ```"""
        output_attentions = (output_attentions if output_attentions is not None
                             else self.config.output_attentions)
        output_hidden_states = (output_hidden_states
                                if output_hidden_states is not None else
                                self.config.output_hidden_states)
        return_dict = (return_dict if return_dict is not None else
                       self.config.use_return_dict)

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attn_padding_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits, ) + outputs[1:]
            return (loss, ) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        **kwargs,
    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update({
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
        })
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (tuple(
                past_state.index_select(0, beam_idx)
                for past_state in layer_past), )
        return reordered_past