File size: 5,764 Bytes
bc6e7dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# CREDITS: This comes almost as-is from the Triton layer norm tutorial
# https://github.com/openai/triton/blob/master/python/tutorials/05-layer-norm.py
# Copyright 2024 OpenNLPLab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding=utf-8
import torch
import torch.nn.functional as F
import triton
import triton.language as tl
# fmt: off
@triton.jit
def srms_norm_fw(X, Y, V, stride, N, eps, BLOCK_SIZE_N: tl.constexpr):
# fmt: on
row = tl.program_id(0)
cols = tl.arange(0, BLOCK_SIZE_N)
mask = cols < N
# Move to this row
x_ptrs = X + row * stride + cols
x = tl.load(x_ptrs, mask=mask, other=0.0).to(tl.float32)
x_zm = tl.where(mask, x, 0.0)
x_var = tl.sum(x_zm * x_zm, axis=0) / N
rstd = 1.0 / tl.sqrt(x_var + eps)
# Normalize, optionally affine
y = x_zm * rstd
tl.store(V + row, rstd)
y_ptrs = Y + row * stride + cols
tl.store(y_ptrs, y, mask=mask)
# Backward pass (DX + partial DW + partial DB)
# fmt: off
@triton.jit
def srms_norm_bwd_dx_fused(
DX, DY,
X, V,
stride, N,
# META-parameters
BLOCK_SIZE_N: tl.constexpr,
):
# fmt: on
# position of elements processed by this program
row = tl.program_id(0)
cols = tl.arange(0, BLOCK_SIZE_N)
mask = cols < N
# offset data pointers to start at the row of interest
x_ptrs = X + row * stride + cols
dy_ptrs = DY + row * stride + cols
# load data to SRAM
x = tl.load(x_ptrs, mask=mask, other=0)
dy = tl.load(dy_ptrs, mask=mask, other=0)
rstd = tl.load(V + row)
# compute dx
xhat = x * rstd
wdy = dy
xhat = tl.where(mask, xhat, 0.)
wdy = tl.where(mask, wdy, 0.)
mean1 = tl.sum(xhat * wdy, axis=0) / N
dx = (wdy - (xhat * mean1)) * rstd
# write-back dx
mask = cols < N # re-materialize the mask to save registers
dx_ptrs = DX + row * stride + cols
tl.store(dx_ptrs, dx, mask=mask)
class _SrmsNorm(torch.autograd.Function):
@staticmethod
def forward(ctx, x, eps):
# catch eps being too small if the tensors are fp16
if x.dtype == torch.float16:
eps = max(eps, 1.6e-5)
# allocate output
y = torch.empty_like(x)
# reshape input data into 2D tensor
x_arg = x.reshape(-1, x.shape[-1])
M, N = x_arg.shape
# allocate mean and std, they'll be used in the backward pass
rstd = torch.empty((M, ), dtype=torch.float32, device=x.device)
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_SIZE_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_SIZE_N:
raise RuntimeError(
"This layer norm doesn't support feature dim >= 64KB.")
if not x_arg.is_contiguous() or not y.is_contiguous():
x_arg = x_arg.contiguous()
y = y.contiguous()
# heuristics for number of warps.
num_warps = min(max(BLOCK_SIZE_N // 256, 1), 16)
# enqueue kernel
# fmt: off
srms_norm_fw[(M,)](
x_arg, y, rstd,
x_arg.stride(0),
N,
eps,
num_warps=num_warps,
BLOCK_SIZE_N=BLOCK_SIZE_N,
)
# fmt: on
ctx.save_for_backward(x, rstd)
ctx.BLOCK_SIZE_N = BLOCK_SIZE_N
ctx.num_warps = num_warps
return y.reshape_as(x)
@staticmethod
def backward(
ctx, dy
): # pragma: no cover # this is covered, but called directly from C++
x, rstd = ctx.saved_tensors
# flatten the batch dimension, if any.
# We're interested in 'samples' x norm_dimension
x = x.reshape(-1, x.size(-1))
M, N = x.size()
# heuristics for amount of parallel reduction stream for DG/DB
GROUP_SIZE_M = 32
if N <= 8192:
GROUP_SIZE_M = 64
if N <= 4096:
GROUP_SIZE_M = 96
if N <= 2048:
GROUP_SIZE_M = 128
if N <= 1024:
GROUP_SIZE_M = 256
if dy.dtype == torch.float32:
GROUP_SIZE_M = GROUP_SIZE_M // 2
# allocate output
dy = dy.contiguous()
dx = torch.empty_like(dy)
# Check the tensor shapes and layouts
# we suppose in the kernel that they have the same size and are contiguous
assert (
dy.numel() == x.numel()
), "Something is wrong in the backward graph, possibly because of an inplace operation after the layernorm"
# enqueue kernel using forward pass heuristics
# also compute partial sums for DW and DB
num_warps = min(max(ctx.BLOCK_SIZE_N // 256, 1), 16)
# fmt: off
srms_norm_bwd_dx_fused[(M,)](
dx, dy, x,
rstd,
x.stride(0),
N,
BLOCK_SIZE_N=ctx.BLOCK_SIZE_N,
num_warps=num_warps
)
# fmt: on
dx = dx.reshape_as(dy)
return dx, None, None
class SimpleRMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.dim = dim
def forward(self, x):
return _SrmsNorm.apply(x, self.eps)
|