--- license: apache-2.0 language: - en - zh pipeline_tag: text-generation tags: - ' TransNormerLLM' ---

TransNormerLLM3 -- A Faster and Better LLM

# Introduction This official repository unveils the TransNormerLLM3 model along with its open-source weights for every 50 billion tokens processed during pre-training. [TransNormerLLM](https://arxiv.org/abs/2307.14995) evolving from [TransNormer](https://arxiv.org/abs/2210.10340), standing out as the first LLM within the linear transformer architecture. Additionally, it distinguishes itself by being the first non-Transformer LLM to exceed both traditional Transformer and other efficient Transformer models (such as, RetNet and Mamba) in terms of speed and performance. # TransNormerLLM3 - **TransNormerLLM3-15B** features **14.83 billion** parameters. It is structured with **42 layers**, includes **40 attention heads**, and has a total **embedding size of 5120**. - **TransNormerLLM3-15B** is purely intergrated with **[Lightning Attention-2](http://arxiv.org/abs/2401.04658)**, which can maintain a **stable TGS** during training of **unlimited sequence lengths**, up until encountering firm limitations like GPU memory constraints. - **Titoken** tokenizer is used with a total **vocabulary size** of about **100,000**. - It incorporates **Simple GLU** for its channel mixer, **GLA** in the token mixer, and **SRMSNorm** for normalization. - In terms of position encoding, the first layer employs **LRPE with exponential decay**, whereas the subsequent layers continue with **exponential decay encoding**. ### Pre-training Logbook * Realtime Track: https://api.wandb.ai/links/opennlplab/kip314lq * Join to dicussion: [discord](https://discord.gg/MYQh6BWN) <<<>>> [wechat group](https://github.com/OpenNLPLab/TransnormerLLM/blob/main/images/contact_me_qr.png) > --23.12.25-- startup: [WeChat - 预训练启航](https://mp.weixin.qq.com/s/YjUY-uy89WkF75_-rBTuKw) <<<>>> [Twitter - Pre-training Commences ](https://twitter.com/opennlplab/status/1739568669502611825) <<<>>> [YouTube Recording](https://t.co/wk7svS4o5r) <<<>>> [bilibili 回放](https://www.bilibili.com/video/BV11j411J7Dy) > --24.01.02-- first week review: [WeChat - 第一周概览](https://mp.weixin.qq.com/s/zwGnZZI3itNPoxzzXkuU2w) <<<>>> [Twitter - First Week Review](https://twitter.com/opennlplab/status/1742187694078501038) > --24.01.09-- second week review: [WeChat - 第二周概览](https://mp.weixin.qq.com/s/6D0qi-0aBier05OKuHfPEA) <<<>>> [Twitter - Second Week Review](https://twitter.com/opennlplab/status/1744720007299523063) # Released Weights | param | token | Hugging Face | Model Scope | Wisemodel | | :-----: | :---: | :----------: | :---------: | :-------: | | **15B** | 50B | 🤗 | 🤖 | 🐯 | # Benchmark Results The evaluations of all models are conducted using the official settings and the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) framework. | Model | P | T | BoolQ | PIQA | HS | WG | ARC-e | ARC-c | OBQA | MMLU | C-Eval | | ----------------------- | --- | ---- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ------ | | **TransNormerLLM3-15B** | 15 | 0.05 | 62.08 | 72.52 | 55.55 | 57.14 | 62.12 | 31.14 | 32.40 | 27.50 | 26.18 | | **TransNormerLLM3-15B** | 15 | 0.10 | 63.98 | 74.70 | 61.09 | 61.33 | 65.95 | 34.64 | 35.60 | 25.38 | 27.40 | | **TransNormerLLM3-15B** | 15 | 0.15 | 60.34 | 75.08 | 63.99 | 62.04 | 64.56 | 34.90 | 35.20 | 22.64 | 26.60 | > **P**: parameter size (billion). **T**: tokens (trillion). **BoolQ**: acc. **PIQA**: acc. **HellaSwag**: acc_norm. **WinoGrande**: acc. **ARC-easy**: acc. **ARC-challenge**: acc_norm. **OpenBookQA**: acc_norm. **MMLU**: 5-shot acc. **C-Eval**: 5-shot acc. # Acknowledgments and Citation ## Acknowledgments Our project is developed based on the following open source projects: - [tiktoken](https://github.com/openai/tiktoken) for the tokenizer. - [metaseq](https://github.com/facebookresearch/metaseq) for training. - [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) for evaluation. ## Citation If you wish to cite our work, please use the following reference: ``` @article{qin2023scaling, title={Scaling transnormer to 175 billion parameters}, author={Qin, Zhen and Li, Dong and Sun, Weigao and Sun, Weixuan and Shen, Xuyang and Han, Xiaodong and Wei, Yunshen and Lv, Baohong and Yuan, Fei and Luo, Xiao and others}, journal={arXiv preprint arXiv:2307.14995}, year={2023} } ```

- OpenNLPLab @2024 -