|
import torch |
|
import torch.nn as nn |
|
import torch_redstone as rst |
|
from einops import rearrange |
|
from .pointnet_util import PointNetSetAbstraction |
|
|
|
|
|
class PreNorm(nn.Module): |
|
def __init__(self, dim, fn): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(dim) |
|
self.fn = fn |
|
def forward(self, x, *extra_args, **kwargs): |
|
return self.fn(self.norm(x), *extra_args, **kwargs) |
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, hidden_dim, dropout = 0.): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(dim, hidden_dim), |
|
nn.GELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(hidden_dim, dim), |
|
nn.Dropout(dropout) |
|
) |
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., rel_pe = False): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
project_out = not (heads == 1 and dim_head == dim) |
|
|
|
self.heads = heads |
|
self.scale = dim_head ** -0.5 |
|
|
|
self.attend = nn.Softmax(dim = -1) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, dim), |
|
nn.Dropout(dropout) |
|
) if project_out else nn.Identity() |
|
|
|
self.rel_pe = rel_pe |
|
if rel_pe: |
|
self.pe = nn.Sequential(nn.Conv2d(3, 64, 1), nn.ReLU(), nn.Conv2d(64, 1, 1)) |
|
|
|
def forward(self, x, centroid_delta): |
|
qkv = self.to_qkv(x).chunk(3, dim = -1) |
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) |
|
|
|
pe = self.pe(centroid_delta) if self.rel_pe else 0 |
|
dots = (torch.matmul(q, k.transpose(-1, -2)) + pe) * self.scale |
|
|
|
attn = self.attend(dots) |
|
attn = self.dropout(attn) |
|
|
|
out = torch.matmul(attn, v) |
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
return self.to_out(out) |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., rel_pe = False): |
|
super().__init__() |
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append(nn.ModuleList([ |
|
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, rel_pe = rel_pe)), |
|
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) |
|
])) |
|
def forward(self, x, centroid_delta): |
|
for attn, ff in self.layers: |
|
x = attn(x, centroid_delta) + x |
|
x = ff(x) + x |
|
return x |
|
|
|
|
|
class PointPatchTransformer(nn.Module): |
|
def __init__(self, dim, depth, heads, mlp_dim, sa_dim, patches, prad, nsamp, in_dim=3, dim_head=64, rel_pe=False, patch_dropout=0) -> None: |
|
super().__init__() |
|
self.patches = patches |
|
self.patch_dropout = patch_dropout |
|
self.sa = PointNetSetAbstraction(npoint=patches, radius=prad, nsample=nsamp, in_channel=in_dim + 3, mlp=[64, 64, sa_dim], group_all=False) |
|
self.lift = nn.Sequential(nn.Conv1d(sa_dim + 3, dim, 1), rst.Lambda(lambda x: torch.permute(x, [0, 2, 1])), nn.LayerNorm([dim])) |
|
self.cls_token = nn.Parameter(torch.randn(dim)) |
|
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, 0.0, rel_pe) |
|
|
|
def forward(self, features): |
|
self.sa.npoint = self.patches |
|
if self.training: |
|
self.sa.npoint -= self.patch_dropout |
|
|
|
centroids, feature = self.sa(features[:, :3], features) |
|
|
|
x = self.lift(torch.cat([centroids, feature], dim=1)) |
|
|
|
x = rst.supercat([self.cls_token, x], dim=-2) |
|
centroids = rst.supercat([centroids.new_zeros(1), centroids], dim=-1) |
|
|
|
centroid_delta = centroids.unsqueeze(-1) - centroids.unsqueeze(-2) |
|
x = self.transformer(x, centroid_delta) |
|
|
|
return x[:, 0] |
|
|
|
|
|
class Projected(nn.Module): |
|
def __init__(self, ppat, proj) -> None: |
|
super().__init__() |
|
self.ppat = ppat |
|
self.proj = proj |
|
|
|
def forward(self, features: torch.Tensor): |
|
return self.proj(self.ppat(features)) |
|
|