File size: 2,847 Bytes
1a389d3
 
9a3d39c
 
 
1a389d3
 
9e26347
5c6ef46
1a389d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c32d7e4
 
1a389d3
 
 
 
 
 
 
 
 
 
 
 
5f74b53
1a389d3
9e26347
5f74b53
1a389d3
9e26347
 
1a389d3
 
9e26347
 
 
 
 
 
1a389d3
 
 
 
 
 
 
9a3d39c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model:
- SimianLuo/LCM_Dreamshaper_v7
base_model_relation: quantized
---

# LCM_Dreamshaper_v7-int8-ov

 * Model creator: [SimianLuo](https://huggingface.co/SimianLuo)
 * Original model: [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7)

## Description

This is [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).

## Quantization Parameters

Weight compression was performed using `nncf.compress_weights` with the following parameters:


* mode: **INT8_ASYM**
* ratio: **1.0**

For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).

## Compatibility

The provided OpenVINO™ IR model is compatible with:

* OpenVINO version 2024.2.0 and higher
* Optimum Intel 1.17.0 and higher

## Running Model Inference

1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:

```
pip install optimum[openvino]
```

2. Run model inference:

```
from optimum.intel import OVLatentConsistencyModelPipeline

model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov"
pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id)

prompt = "sailing ship in storm by Rembrandt"
images = pipeline(prompt, num_inference_steps=4).images
```

## Usage examples

* [OpenVINO notebooks](https://github.com/openvinotoolkit/openvino_notebooks):
  - [Latent Consistency Model using Optimum-Intel OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/latent-consistency-models-image-generation/latent-consistency-models-optimum-demo.ipynb)
* [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai):
  -  [C++ image generation pipeline](https://github.com/openvinotoolkit/openvino.genai/tree/master/image_generation/lcm_dreamshaper_v7/cpp)

## Legal information

The original model is distributed under [mit](https://choosealicense.com/licenses/mit/) license. More details can be found in [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7).

## Disclaimer

Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.