File size: 3,559 Bytes
8740802
 
 
 
 
 
 
 
e91f99f
8740802
 
 
 
 
 
 
 
5e6ac46
8740802
 
 
 
 
 
 
8f0e74f
5e6ac46
8740802
 
 
 
 
e91f99f
8f0e74f
8740802
 
 
e91f99f
8740802
 
e91f99f
8740802
 
 
e91f99f
8740802
 
 
 
 
e91f99f
8740802
 
e91f99f
8740802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa33c9d
 
8c7869a
8740802
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: other
---

# Phi-3-mini-FastDraft-50M-int8-ov
## Description

FastDraft is a novel and efficient approach for pre-training and aligning a draft model to any LLM to be used with speculative decoding, by incorporating efficient pre-training followed by fine-tuning over synthetic datasets generated by the target model.
FastDraft was presented in [paper](https://arxiv.org/abs/2411.11055) at ENLSP@NeurIPS24 by Intel Labs.
 
This is a draft model that was trained with FastDraft to accompany [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).

This is Phi-3-mini-FastDraft-50M model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to int8 by [NNCF](https://github.com/openvinotoolkit/nncf).

## Quantization Parameters

Weight compression was performed using `nncf.compress_weights` with the following parameters:
* mode: **INT8_ASYM**

For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).

## Compatibility

The provided OpenVINO™ IR model is compatible with:

* OpenVINO version **2024.5** and higher
* Optimum Intel **1.20.0** and higher

## Running Model Inference with OpenVINO GenAI

1. Install packages required for using [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) with Speculative decoding: 

```bash
pip install -U "openvino-genai>=2024.5" huggingface_hub
```

2. Download models from HuggingFace Hub
```python
import huggingface_hub as hf_hub
 
main_model_id = "OpenVINO/Phi-3-mini-4k-instruct-int4-ov"
draft_model_id = "OpenVINO/Phi-3-mini-FastDraft-50M-int8-ov"
 
main_model_path = "main"
draft_model_path = "draft"
 
hf_hub.snapshot_download(main_model_id, local_dir=main_model_path)
hf_hub.snapshot_download(draft_model_id, local_dir=draft_model_path)
```
3. Run model inference using the speculative decoding and specify the pipeline parameters:
```python
import openvino_genai
 
prompt = "What is OpenVINO?"
 
config = openvino_genai.GenerationConfig()
config.num_assistant_tokens = 3
config.max_new_tokens = 128
 
def streamer(subword):
    print(subword, end='', flush=True)
    return False
 
main_device = "CPU"
draft_device = "CPU"
 
draft_model = openvino_genai.draft_model(draft_model_path, draft_device)
 
scheduler_config = openvino_genai.SchedulerConfig()
scheduler_config.cache_size = 2
 
pipe = openvino_genai.LLMPipeline(main_model_path, main_device, scheduler_config=scheduler_config, draft_model=draft_model)
 
pipe.generate(prompt, config, streamer)
```

More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai/tree/master/samples)

## Legal Information

The model is distributed under the [Intel Research Use License Agreement](https://huggingface.co/OpenVINO/Llama-3.1-8B-Instruct-FastDraft-150M-int8-ov/blob/main/LICENSE.md).

## Disclaimer

Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.