File size: 1,795 Bytes
30f5343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
license: mit
language:
- en
---
# dolly-v2-3b-fp16-ov
* Model creator: [Databricks](https://huggingface.co/databricks)
* Original model: [dolly-v2-3b](https://huggingface.co/databricks/dolly-v2-3b)
## Description
This is [dolly-v2-3b](https://huggingface.co/databricks/dolly-v2-3b) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format.
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2024.1.0 and higher
* Optimum Intel 1.16.0 and higher
## Running Model Inference
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "OpenVINO/dolly-v2-3b-fp16-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
## Limitations
Check the original model card for [limitations](https://huggingface.co/databricks/dolly-v2-3b#known-limitations).
## Legal information
The original model is distributed under mit license. More details can be found in [original model card](https://huggingface.co/databricks/dolly-v2-3b). |