# Mixtral-8x7b-Instruct-v0.1-int4-ov * Model creator: [Mistral AI](https://huggingface.co/mistralai) * Original model: [Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) ## Description This is [Mixtral-8x7b-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model converted to [OpenVINO](https://docs.openvino.ai/2024/home.html) Intermediate Representation (IR) format with INT4 compressed weights using [NNCF](https://github.com/openvinotoolkit/nncf). ## Compatibility This provided IR is compatible with openvino starting with 2024.0.0 version and optimum-intel 1.16.0 ## Usage ### Install required packages To install the required components for using [Optimum Intel integration](https://huggingface.co/docs/optimum/intel/index) with the OpenVINO backend, do: ``` pip install optimum[openvino] ``` ### Run model inference ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id) messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") outputs = model.generate(inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` For more examples and possible optimizations please refer [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) ### Limitations Please check original model card for model usage [limitations](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#limitations)