File size: 20,421 Bytes
6595278
 
9f4ea2b
 
 
 
9f6465f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4ea2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b0f89e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4ea2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b5038
9f4ea2b
 
 
 
 
 
 
 
 
36b5038
9f4ea2b
 
 
 
 
 
 
 
 
36b5038
9f4ea2b
 
 
 
 
 
 
 
 
36b5038
9f4ea2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b5038
9f4ea2b
 
 
 
 
 
 
 
 
 
 
36b5038
9f4ea2b
 
 
 
 
 
 
 
 
 
 
36b5038
9f4ea2b
 
 
 
 
 
 
 
 
 
 
36b5038
9f4ea2b
 
 
36b5038
9f4ea2b
 
 
 
 
 
 
36b5038
9f4ea2b
36b5038
9f4ea2b
36b5038
9f4ea2b
36b5038
9f4ea2b
36b5038
9f4ea2b
36b5038
9f4ea2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b5038
 
 
6595278
 
2a0485d
 
 
 
0bbb2c3
 
 
 
 
2a0485d
 
fd87232
2a0485d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
---
tags:
- mteb
model-index:
- name: Solon-embeddings-large-0.1
  results:
  - task:
      type: sentence-similarity
      name: Passage Retrieval
    dataset:
      type: unicamp-dl/mmarco
      name: mMARCO-fr
      config: french
      split: validation
    metrics:
      - type: recall_at_500
        name: Recall@500
        value: 92.7
      - type: recall_at_100
        name: Recall@100
        value: 82.7
      - type: recall_at_10
        name: Recall@10
        value: 55.5
      - type: map_at_10
        name: MAP@10
        value: 29.4
      - type: ndcg_at_10
        name: nDCG@10
        value: 35.8
      - type: mrr_at_10
        name: MRR@10
        value: 29.9
  - task:
      type: Clustering
    dataset:
      type: lyon-nlp/alloprof
      name: MTEB AlloProfClusteringP2P
      config: default
      split: test
      revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
    metrics:
    - type: v_measure
      value: 64.16942168287153
  - task:
      type: Clustering
    dataset:
      type: lyon-nlp/alloprof
      name: MTEB AlloProfClusteringS2S
      config: default
      split: test
      revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
    metrics:
    - type: v_measure
      value: 38.17076313383054
  - task:
      type: Reranking
    dataset:
      type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
      name: MTEB AlloprofReranking
      config: default
      split: test
      revision: 666fdacebe0291776e86f29345663dfaf80a0db9
    metrics:
    - type: map
      value: 64.8770878097632
    - type: mrr
      value: 66.39132423169396
  - task:
      type: Retrieval
    dataset:
      type: lyon-nlp/alloprof
      name: MTEB AlloprofRetrieval
      config: default
      split: test
      revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
    metrics:
    - type: map_at_1
      value: 29.62
    - type: map_at_10
      value: 40.963
    - type: map_at_100
      value: 41.894
    - type: map_at_1000
      value: 41.939
    - type: map_at_3
      value: 37.708999999999996
    - type: map_at_5
      value: 39.696999999999996
    - type: mrr_at_1
      value: 29.62
    - type: mrr_at_10
      value: 40.963
    - type: mrr_at_100
      value: 41.894
    - type: mrr_at_1000
      value: 41.939
    - type: mrr_at_3
      value: 37.708999999999996
    - type: mrr_at_5
      value: 39.696999999999996
    - type: ndcg_at_1
      value: 29.62
    - type: ndcg_at_10
      value: 46.942
    - type: ndcg_at_100
      value: 51.629999999999995
    - type: ndcg_at_1000
      value: 52.927
    - type: ndcg_at_3
      value: 40.333999999999996
    - type: ndcg_at_5
      value: 43.922
    - type: precision_at_1
      value: 29.62
    - type: precision_at_10
      value: 6.589
    - type: precision_at_100
      value: 0.882
    - type: precision_at_1000
      value: 0.099
    - type: precision_at_3
      value: 15.976
    - type: precision_at_5
      value: 11.33
    - type: recall_at_1
      value: 29.62
    - type: recall_at_10
      value: 65.889
    - type: recall_at_100
      value: 88.212
    - type: recall_at_1000
      value: 98.575
    - type: recall_at_3
      value: 47.927
    - type: recall_at_5
      value: 56.64900000000001
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_reviews_multi
      name: MTEB AmazonReviewsClassification (fr)
      config: fr
      split: test
      revision: 1399c76144fd37290681b995c656ef9b2e06e26d
    metrics:
    - type: accuracy
      value: 42.077999999999996
    - type: f1
      value: 40.64511241732637
  - task:
      type: Retrieval
    dataset:
      type: maastrichtlawtech/bsard
      name: MTEB BSARDRetrieval
      config: default
      split: test
      revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
    metrics:
    - type: map_at_1
      value: 0.901
    - type: map_at_10
      value: 1.524
    - type: map_at_100
      value: 1.833
    - type: map_at_1000
      value: 1.916
    - type: map_at_3
      value: 1.276
    - type: map_at_5
      value: 1.276
    - type: mrr_at_1
      value: 0.901
    - type: mrr_at_10
      value: 1.524
    - type: mrr_at_100
      value: 1.833
    - type: mrr_at_1000
      value: 1.916
    - type: mrr_at_3
      value: 1.276
    - type: mrr_at_5
      value: 1.276
    - type: ndcg_at_1
      value: 0.901
    - type: ndcg_at_10
      value: 2.085
    - type: ndcg_at_100
      value: 3.805
    - type: ndcg_at_1000
      value: 6.704000000000001
    - type: ndcg_at_3
      value: 1.41
    - type: ndcg_at_5
      value: 1.41
    - type: precision_at_1
      value: 0.901
    - type: precision_at_10
      value: 0.40499999999999997
    - type: precision_at_100
      value: 0.126
    - type: precision_at_1000
      value: 0.037
    - type: precision_at_3
      value: 0.601
    - type: precision_at_5
      value: 0.36
    - type: recall_at_1
      value: 0.901
    - type: recall_at_10
      value: 4.054
    - type: recall_at_100
      value: 12.613
    - type: recall_at_1000
      value: 36.937
    - type: recall_at_3
      value: 1.802
    - type: recall_at_5
      value: 1.802
  - task:
      type: BitextMining
    dataset:
      type: rbawden/DiaBLa
      name: MTEB DiaBLaBitextMining (fr-en)
      config: fr-en
      split: test
      revision: 5345895c56a601afe1a98519ce3199be60a27dba
    metrics:
    - type: accuracy
      value: 88.90048712595686
    - type: f1
      value: 86.94952864886115
    - type: precision
      value: 86.20344379175826
    - type: recall
      value: 88.90048712595686
  - task:
      type: Clustering
    dataset:
      type: lyon-nlp/clustering-hal-s2s
      name: MTEB HALClusteringS2S
      config: default
      split: test
      revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
    metrics:
    - type: v_measure
      value: 24.087988843991155
  - task:
      type: Clustering
    dataset:
      type: mlsum
      name: MTEB MLSUMClusteringP2P
      config: default
      split: test
      revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
    metrics:
    - type: v_measure
      value: 43.79603865728535
  - task:
      type: Clustering
    dataset:
      type: mlsum
      name: MTEB MLSUMClusteringS2S
      config: default
      split: test
      revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
    metrics:
    - type: v_measure
      value: 37.746550373003
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_domain
      name: MTEB MTOPDomainClassification (fr)
      config: fr
      split: test
      revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
    metrics:
    - type: accuracy
      value: 89.26088318196052
    - type: f1
      value: 88.95811185929033
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_intent
      name: MTEB MTOPIntentClassification (fr)
      config: fr
      split: test
      revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
    metrics:
    - type: accuracy
      value: 68.55308487316003
    - type: f1
      value: 48.2936682439785
  - task:
      type: Classification
    dataset:
      type: masakhane/masakhanews
      name: MTEB MasakhaNEWSClassification (fra)
      config: fra
      split: test
      revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
    metrics:
    - type: accuracy
      value: 81.51658767772511
    - type: f1
      value: 77.695234448912
  - task:
      type: Clustering
    dataset:
      type: masakhane/masakhanews
      name: MTEB MasakhaNEWSClusteringP2P (fra)
      config: fra
      split: test
      revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
    metrics:
    - type: v_measure
      value: 40.80377094681114
  - task:
      type: Clustering
    dataset:
      type: masakhane/masakhanews
      name: MTEB MasakhaNEWSClusteringS2S (fra)
      config: fra
      split: test
      revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
    metrics:
    - type: v_measure
      value: 28.79703837416241
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_intent
      name: MTEB MassiveIntentClassification (fr)
      config: fr
      split: test
      revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
    metrics:
    - type: accuracy
      value: 67.40080699394755
    - type: f1
      value: 65.60793135686376
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_scenario
      name: MTEB MassiveScenarioClassification (fr)
      config: fr
      split: test
      revision: 7d571f92784cd94a019292a1f45445077d0ef634
    metrics:
    - type: accuracy
      value: 71.29455279085406
    - type: f1
      value: 70.80876673828983
  - task:
      type: Retrieval
    dataset:
      type: jinaai/mintakaqa
      name: MTEB MintakaRetrieval (fr)
      config: fr
      split: test
      revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
    metrics:
    - type: map_at_1
      value: 16.625999999999998
    - type: map_at_10
      value: 25.224999999999998
    - type: map_at_100
      value: 26.291999999999998
    - type: map_at_1000
      value: 26.395000000000003
    - type: map_at_3
      value: 22.378999999999998
    - type: map_at_5
      value: 24.009
    - type: mrr_at_1
      value: 16.625999999999998
    - type: mrr_at_10
      value: 25.224999999999998
    - type: mrr_at_100
      value: 26.291999999999998
    - type: mrr_at_1000
      value: 26.395000000000003
    - type: mrr_at_3
      value: 22.378999999999998
    - type: mrr_at_5
      value: 24.009
    - type: ndcg_at_1
      value: 16.625999999999998
    - type: ndcg_at_10
      value: 30.074
    - type: ndcg_at_100
      value: 35.683
    - type: ndcg_at_1000
      value: 38.714999999999996
    - type: ndcg_at_3
      value: 24.188000000000002
    - type: ndcg_at_5
      value: 27.124
    - type: precision_at_1
      value: 16.625999999999998
    - type: precision_at_10
      value: 4.566
    - type: precision_at_100
      value: 0.729
    - type: precision_at_1000
      value: 0.097
    - type: precision_at_3
      value: 9.801
    - type: precision_at_5
      value: 7.305000000000001
    - type: recall_at_1
      value: 16.625999999999998
    - type: recall_at_10
      value: 45.659
    - type: recall_at_100
      value: 72.85000000000001
    - type: recall_at_1000
      value: 97.42
    - type: recall_at_3
      value: 29.402
    - type: recall_at_5
      value: 36.527
  - task:
      type: PairClassification
    dataset:
      type: GEM/opusparcus
      name: MTEB OpusparcusPC (fr)
      config: fr
      split: test
      revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
    metrics:
    - type: cos_sim_accuracy
      value: 83.58310626702998
    - type: cos_sim_ap
      value: 94.01979957812989
    - type: cos_sim_f1
      value: 88.70135958743555
    - type: cos_sim_precision
      value: 84.01420959147424
    - type: cos_sim_recall
      value: 93.94240317775571
    - type: dot_accuracy
      value: 83.58310626702998
    - type: dot_ap
      value: 94.01979957812989
    - type: dot_f1
      value: 88.70135958743555
    - type: dot_precision
      value: 84.01420959147424
    - type: dot_recall
      value: 93.94240317775571
    - type: euclidean_accuracy
      value: 83.58310626702998
    - type: euclidean_ap
      value: 94.01979957812989
    - type: euclidean_f1
      value: 88.70135958743555
    - type: euclidean_precision
      value: 84.01420959147424
    - type: euclidean_recall
      value: 93.94240317775571
    - type: manhattan_accuracy
      value: 83.58310626702998
    - type: manhattan_ap
      value: 93.99936024003892
    - type: manhattan_f1
      value: 88.6924150767799
    - type: manhattan_precision
      value: 83.45008756567425
    - type: manhattan_recall
      value: 94.63753723932473
    - type: max_accuracy
      value: 83.58310626702998
    - type: max_ap
      value: 94.01979957812989
    - type: max_f1
      value: 88.70135958743555
  - task:
      type: PairClassification
    dataset:
      type: paws-x
      name: MTEB PawsX (fr)
      config: fr
      split: test
      revision: 8a04d940a42cd40658986fdd8e3da561533a3646
    metrics:
    - type: cos_sim_accuracy
      value: 60.6
    - type: cos_sim_ap
      value: 60.18915797975459
    - type: cos_sim_f1
      value: 62.491349480968864
    - type: cos_sim_precision
      value: 45.44539506794162
    - type: cos_sim_recall
      value: 100
    - type: dot_accuracy
      value: 60.6
    - type: dot_ap
      value: 60.091135216056024
    - type: dot_f1
      value: 62.491349480968864
    - type: dot_precision
      value: 45.44539506794162
    - type: dot_recall
      value: 100
    - type: euclidean_accuracy
      value: 60.6
    - type: euclidean_ap
      value: 60.18915797975459
    - type: euclidean_f1
      value: 62.491349480968864
    - type: euclidean_precision
      value: 45.44539506794162
    - type: euclidean_recall
      value: 100
    - type: manhattan_accuracy
      value: 60.650000000000006
    - type: manhattan_ap
      value: 60.2082343915352
    - type: manhattan_f1
      value: 62.491349480968864
    - type: manhattan_precision
      value: 45.44539506794162
    - type: manhattan_recall
      value: 100
    - type: max_accuracy
      value: 60.650000000000006
    - type: max_ap
      value: 60.2082343915352
    - type: max_f1
      value: 62.491349480968864
  - task:
      type: STS
    dataset:
      type: Lajavaness/SICK-fr
      name: MTEB SICKFr
      config: default
      split: test
      revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
    metrics:
    - type: cos_sim_pearson
      value: 79.77067200230256
    - type: cos_sim_spearman
      value: 76.7445532523278
    - type: euclidean_pearson
      value: 76.34017074673956
    - type: euclidean_spearman
      value: 76.7453011027832
    - type: manhattan_pearson
      value: 76.19578084197778
    - type: manhattan_spearman
      value: 76.56293456459228
  - task:
      type: STS
    dataset:
      type: mteb/sts22-crosslingual-sts
      name: MTEB STS22 (fr)
      config: fr
      split: test
      revision: eea2b4fe26a775864c896887d910b76a8098ad3f
    metrics:
    - type: cos_sim_pearson
      value: 81.2564160237984
    - type: cos_sim_spearman
      value: 83.30552085410882
    - type: euclidean_pearson
      value: 82.00494560507786
    - type: euclidean_spearman
      value: 83.30552085410882
    - type: manhattan_pearson
      value: 81.93132229157803
    - type: manhattan_spearman
      value: 83.04357992939353
  - task:
      type: STS
    dataset:
      type: stsb_multi_mt
      name: MTEB STSBenchmarkMultilingualSTS (fr)
      config: fr
      split: test
      revision: 93d57ef91790589e3ce9c365164337a8a78b7632
    metrics:
    - type: cos_sim_pearson
      value: 80.34931905288978
    - type: cos_sim_spearman
      value: 79.99372771100049
    - type: euclidean_pearson
      value: 78.37976845123443
    - type: euclidean_spearman
      value: 79.99452356550658
    - type: manhattan_pearson
      value: 78.24434042082316
    - type: manhattan_spearman
      value: 79.87248340061164
  - task:
      type: Summarization
    dataset:
      type: lyon-nlp/summarization-summeval-fr-p2p
      name: MTEB SummEvalFr
      config: default
      split: test
      revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
    metrics:
    - type: cos_sim_pearson
      value: 30.476001473421586
    - type: cos_sim_spearman
      value: 29.687350195905456
    - type: dot_pearson
      value: 30.476000875190685
    - type: dot_spearman
      value: 29.662224660056562
  - task:
      type: Reranking
    dataset:
      type: lyon-nlp/mteb-fr-reranking-syntec-s2p
      name: MTEB SyntecReranking
      config: default
      split: test
      revision: b205c5084a0934ce8af14338bf03feb19499c84d
    metrics:
    - type: map
      value: 88.28333333333333
    - type: mrr
      value: 88.28333333333333
  - task:
      type: Retrieval
    dataset:
      type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
      name: MTEB SyntecRetrieval
      config: default
      split: test
      revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff
    metrics:
    - type: map_at_1
      value: 69
    - type: map_at_10
      value: 79.906
    - type: map_at_100
      value: 79.982
    - type: map_at_1000
      value: 79.982
    - type: map_at_3
      value: 77.667
    - type: map_at_5
      value: 79.51700000000001
    - type: mrr_at_1
      value: 69
    - type: mrr_at_10
      value: 79.906
    - type: mrr_at_100
      value: 79.982
    - type: mrr_at_1000
      value: 79.982
    - type: mrr_at_3
      value: 77.667
    - type: mrr_at_5
      value: 79.51700000000001
    - type: ndcg_at_1
      value: 69
    - type: ndcg_at_10
      value: 84.60499999999999
    - type: ndcg_at_100
      value: 84.868
    - type: ndcg_at_1000
      value: 84.868
    - type: ndcg_at_3
      value: 80.333
    - type: ndcg_at_5
      value: 83.647
    - type: precision_at_1
      value: 69
    - type: precision_at_10
      value: 9.9
    - type: precision_at_100
      value: 1
    - type: precision_at_1000
      value: 0.1
    - type: precision_at_3
      value: 29.333
    - type: precision_at_5
      value: 19.2
    - type: recall_at_1
      value: 69
    - type: recall_at_10
      value: 99
    - type: recall_at_100
      value: 100
    - type: recall_at_1000
      value: 100
    - type: recall_at_3
      value: 88
    - type: recall_at_5
      value: 96
  - task:
      type: Retrieval
    dataset:
      type: jinaai/xpqa
      name: MTEB XPQARetrieval (fr)
      config: fr
      split: test
      revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
    metrics:
    - type: map_at_1
      value: 42.027
    - type: map_at_10
      value: 64.331
    - type: map_at_100
      value: 65.657
    - type: map_at_1000
      value: 65.7
    - type: map_at_3
      value: 57.967999999999996
    - type: map_at_5
      value: 62.33800000000001
    - type: mrr_at_1
      value: 65.688
    - type: mrr_at_10
      value: 72.263
    - type: mrr_at_100
      value: 72.679
    - type: mrr_at_1000
      value: 72.69099999999999
    - type: mrr_at_3
      value: 70.405
    - type: mrr_at_5
      value: 71.587
    - type: ndcg_at_1
      value: 65.688
    - type: ndcg_at_10
      value: 70.221
    - type: ndcg_at_100
      value: 74.457
    - type: ndcg_at_1000
      value: 75.178
    - type: ndcg_at_3
      value: 65.423
    - type: ndcg_at_5
      value: 67.05499999999999
    - type: precision_at_1
      value: 65.688
    - type: precision_at_10
      value: 16.208
    - type: precision_at_100
      value: 1.975
    - type: precision_at_1000
      value: 0.207
    - type: precision_at_3
      value: 39.831
    - type: precision_at_5
      value: 28.652
    - type: recall_at_1
      value: 42.027
    - type: recall_at_10
      value: 78.803
    - type: recall_at_100
      value: 95.051
    - type: recall_at_1000
      value: 99.75500000000001
    - type: recall_at_3
      value: 62.62799999999999
    - type: recall_at_5
      value: 70.975
license: mit
language:
- fr
---

# Solon Embeddings — large 0.1

SOTA Open source french embedding model.

**Instructions :**  
Add "query : " before the *query* to retrieve to increase performance of retrieval.  
No instructions needed for *passages*.


| Model | Mean Score |
| --- | --- |
| **OrdalieTech/Solon-embeddings-large-0.1** | 0.7490 |
| cohere/embed-multilingual-v3 | 0.7402 |
| **OrdalieTech/Solon-embeddings-base-0.1** | 0.7306 |
| openai/ada-002 | 0.7290 |
| cohere/embed-multilingual-light-v3 | 0.6945 |
| antoinelouis/biencoder-camembert-base-mmarcoFR | 0.6826 |
| dangvantuan/sentence-camembert-large | 0.6756 |
| voyage/voyage-01 | 0.6753 |
| intfloat/multilingual-e5-large | 0.6660 |
| intfloat/multilingual-e5-base | 0.6597 |
| Sbert/paraphrase-multilingual-mpnet-base-v2 | 0.5975 |
| dangvantuan/sentence-camembert-base | 0.5456 |
| EuropeanParliament/eubert_embedding_v1 | 0.5063 |

These results have been obtained through 9 french benchmarks on a variety of text similarity tasks (classification, reranking, STS) :
- AmazonReviewsClassification (MTEB)
- MassiveIntentClassification (MTEB)
- MassiveScenarioClassification (MTEB)
- MTOPDomainClassification (MTEB)
- MTOPIntentClassification (MTEB)
- STS22 (MTEB)
- MiraclFRRerank (Miracl)
- OrdalieFRSTS (Ordalie)
- OrdalieFRReranking (Ordalie)

We created OrdalieFRSTS and OrdalieFRReranking to enhance the benchmarking capabilities of French STS and reranking assessments.

(evaluation script available here : github.com/OrdalieTech/mteb)