Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 286.93 +/- 13.89
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78540d1b2200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78540d1b2290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78540d1b2320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78540d1b23b0>", "_build": "<function ActorCriticPolicy._build at 0x78540d1b2440>", "forward": "<function ActorCriticPolicy.forward at 0x78540d1b24d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78540d1b2560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78540d1b25f0>", "_predict": "<function ActorCriticPolicy._predict at 0x78540d1b2680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78540d1b2710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78540d1b27a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78540d1b2830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78540d157240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707941246870513061, "learning_rate": 0.003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPdEj4n34o/SkUAP/PdFr85QEI+UxqFPgAAAAAAAAAAMysEu0gUhj2u+lO+d8wrvihraL6FE8A9AAAAAAAAAADNGJY8rpmeuvXWEbddTg6yQAlBOuFkKDYAAIA/AACAPzNQ2j2fSFg+uc6NvTzT074oLhM+ZemjvQAAAAAAAAAAM9mcvHaIQj9FhM485cNpv0Ezb727m2g9AAAAAAAAAAAAtUw9PTYeu2Y8qrtTJZU8aM8RPD2MgL0AAIA/AACAP40xPj7wC3Q/3YHGPh0SC79c56A+44EsPgAAAAAAAAAABtsUPqFgZz/kUpQ+ygkyv/UVeT4Q+UA9AAAAAAAAAADzR/s9tkkEPyufmr3nRVi/qJ/iPXLcwb0AAAAAAAAAAPNEmr2cRGy8hLUkPtXWK74Z/4G7a/hkPQAAgD8AAIA/GvmEPeR+lT1CLvO9nOgBv5f4ND3+9/G9AAAAAAAAAADm+Ac+rmCWO0A8sb6HEAi8+gAWPRLuf74AAIA/AACAPzMKtTwU8Ne67vcUPaxHtjwdHea7opecPQAAgD8AAIA/ZvUVvdnBBj7F51s+/pkCv9sujD019Bg+AAAAAAAAAACaZ7k91lAdP9ZLlT3B2kG/p/AXPlJ4dDsAAAAAAAAAADMkjLwchlU9CTW3PYZoHb4Spqo9LbLcPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIxufywwCeMAWyUS86MAXSUR0CtcAnKGL1mdX2UKGgGR0BvjSqwQlKLaAdLpmgIR0CtcB7ItDlYdX2UKGgGR0BzJ2+cpb2UaAdNDgJoCEdArXCapm29c3V9lChoBkdAch8VSn+AE2gHS7JoCEdArXDo/RmbsnV9lChoBkdAcOxUW2w3YWgHS7RoCEdArXDsMiKR+3V9lChoBkdAclPc0tRNy2gHS85oCEdArXD/3+MqBnV9lChoBkdAc5qptJnQIGgHS+loCEdArXEZQHiWFHV9lChoBkdAULhJ4B3iaWgHS4poCEdArXEpc/t6X3V9lChoBkdAUo2A9V3ljmgHS41oCEdArXExmI0qIHV9lChoBkdAcgqL6UJOWWgHS9loCEdArXE455qubXV9lChoBkdAcsph3aBZp2gHS95oCEdArXFVB6a9b3V9lChoBkdAcGYBq9GqgmgHS5loCEdArXF1Wn0kGHV9lChoBkdAcAVq814xDmgHS6loCEdArXGoaFVT73V9lChoBkdAcXKBuXNTtWgHS7xoCEdArXGva6BiC3V9lChoBkdAcmf/ffoA4mgHS/NoCEdArXG0lTm4iHV9lChoBkdAbpxyR0U472gHS7hoCEdArXG3FrEcbXV9lChoBkdAcY4MvysjmmgHS41oCEdArXIQaxX4kHV9lChoBkdAcgkpbD/EO2gHS/FoCEdArXtJItlI3HV9lChoBkdActcNDtw71mgHS/hoCEdArXt4sK9f1HV9lChoBkdActX9UCJXQ2gHS8BoCEdArXuyTB68hHV9lChoBkdAc/wiMYMvy2gHS81oCEdArXvr7yhBaHV9lChoBkdAcfaf+S8rZ2gHS9doCEdArXvzGvOhTXV9lChoBkdAcOUnEETxomgHS8hoCEdArXwRuuRs/XV9lChoBkdAcuR7o0Q9R2gHS9NoCEdArXwpKYiPhnV9lChoBkdAcWtQhfShJ2gHS9FoCEdArXxVBWxQi3V9lChoBkdAcxgqDK5kLGgHS+poCEdArXxbNt65XnV9lChoBkdAcwMpDNQj2WgHS+RoCEdArXxpfx+a0HV9lChoBkdAcrEZNwiqyWgHS9JoCEdArXx9bX6InHV9lChoBkdAchrvFWGRFWgHS8RoCEdArXyOknCwbHV9lChoBkdAcphdv863iWgHS8hoCEdArXymyX2M9HV9lChoBkdAc2fhV2icomgHS9xoCEdArXzWoHcDbXV9lChoBkdAdByuW8h9s2gHS/xoCEdArX0na37UG3V9lChoBkdAc7x+aBqbjWgHS+loCEdArX1gbsF+u3V9lChoBkdAcvsmF8G9pWgHS79oCEdArX1lWXC0nnV9lChoBkdAb89UGVzIWGgHS6poCEdArX2J/LDAJ3V9lChoBkdAcMC4VymygWgHS8FoCEdArX2SdOIqLHV9lChoBkdAcuJvSMLncWgHS7RoCEdArX4diWmgrnV9lChoBkdAcVbgQYk3TGgHS8loCEdArX4p5X2du3V9lChoBkdAcX+E+PikwmgHS6RoCEdArX4zzPKMenV9lChoBkdAcX3YR/ViF2gHS7hoCEdArX5fCyhSL3V9lChoBkdAcxmgG8mKImgHS+NoCEdArX5v/kvK2nV9lChoBkdAcjxYx+KCQWgHS6VoCEdArX56SNfgJnV9lChoBkdAckYRu0kWymgHS95oCEdArX6JMYdhiXV9lChoBkdAccOy9mHxjWgHS8hoCEdArX7G0iQkonV9lChoBkdAcluH9m6GxmgHS89oCEdArX79OM2m53V9lChoBkdAcaEbuc+aB2gHS+ZoCEdArX8JaLXL/3V9lChoBkdAcbyIikfs/2gHS5NoCEdArX+FLUTcqXV9lChoBkdAcyQvYe1a4mgHS9toCEdArX+N2A5Jb3V9lChoBkdAcvhbg0j1PGgHS+doCEdArYAtRWLgoHV9lChoBkdAcSTy1eBxxWgHS9NoCEdArYA1iDujRHV9lChoBkdATla+L3sXzmgHS1ZoCEdArYA/xpcopnV9lChoBkdAc63J0GNaQmgHS8hoCEdArYBHDUExI3V9lChoBkdAcqBtuUD+zmgHS99oCEdArYBdfReC1HV9lChoBkdAcbyrN4Z/C2gHS6NoCEdArYBwYFaB7XV9lChoBkdAct0PFefI0mgHS6loCEdArYCYAlv603V9lChoBkdAcVQT2FnIyWgHS7hoCEdArYC87fYSQHV9lChoBkdAcY7Lg4wRG2gHS7hoCEdArYEYnDziCXV9lChoBkdAcKKlSjxkNGgHS7ZoCEdArYEfAfuCw3V9lChoBkdAcVaf9P1tf2gHS71oCEdArYEfPHDJl3V9lChoBkdAcSj5H3Dej2gHS6toCEdArYExBw++unV9lChoBkdAcKTnLaEi+2gHS6JoCEdArYFHrv9cbHV9lChoBkdAcVV90Rvm5mgHS7poCEdArYIsZgogFHV9lChoBkdAcvs6HCXQdGgHS8RoCEdArYJPvOQhfXV9lChoBkdAch8lImPYF2gHS6NoCEdArYKElkYoAnV9lChoBkdAcnYp6QeV9mgHS6doCEdArYLFpCa7VnV9lChoBkdAcDL9i+cpb2gHS7loCEdArYLPvv0AcXV9lChoBkdAcfV0v4/NaGgHS75oCEdArYLXyTY/V3V9lChoBkdAciEfEXLvC2gHTUMBaAhHQK2C6ytV7yB1fZQoaAZHQHFeuWrwOONoB0u/aAhHQK2C8z/IbOx1fZQoaAZHQHDdsgU1yeZoB0u6aAhHQK2DNHim2st1fZQoaAZHQHL2172L5yloB0vlaAhHQK2DRLIxQBR1fZQoaAZHQHEUYhhYvFpoB0vYaAhHQK2DY4GUwBZ1fZQoaAZHQHJ9SSidrftoB0u+aAhHQK2Dg8kleGB1fZQoaAZHQHBPZSm65G1oB0u6aAhHQK2DiqaPS2J1fZQoaAZHQHIq2/BWPtFoB0u/aAhHQK2Dih24d6t1fZQoaAZHQHDooe9zwMJoB0vAaAhHQK2DqEEC/491fZQoaAZHQHDI1j/dZaFoB0viaAhHQK2D33cpLEl1fZQoaAZHQHDQnYYixFBoB0ugaAhHQK2EY1Muez51fZQoaAZHQHOWDv3JxNtoB0vHaAhHQK2Ea1m8M/h1fZQoaAZHQHIHZyIYWLxoB0vJaAhHQK2Ej3wkPc11fZQoaAZHQHDMGwJPZZloB0vgaAhHQK2Em/QjUut1fZQoaAZHQG+qdjG1hLJoB0uxaAhHQK2EnY4ACGN1fZQoaAZHQHJYTiGWUr1oB0u6aAhHQK2Eoq4pc5d1fZQoaAZHQHFwUL6UJOZoB0vFaAhHQK2E4aR6nix1fZQoaAZHQHIP9OmBOHpoB0v0aAhHQK2FawKSgXd1fZQoaAZHQHPE5dWyTpxoB0u7aAhHQK2FcHzH0bt1fZQoaAZHQHK56hYeT3ZoB0vQaAhHQK2FgVyFPBV1fZQoaAZHQHLm9s3yZrpoB0vlaAhHQK2Fmx6fJ3h1fZQoaAZHQHCLeFlCkXVoB0vJaAhHQK2FmlkYoAp1fZQoaAZHQEjxH3lCCz1oB0t1aAhHQK2FywFkhA51fZQoaAZHQHO1JKjBVMpoB0vlaAhHQK2F3VlwtJ51fZQoaAZHQHIZpv99+gFoB0vSaAhHQK2GC75Ec811fZQoaAZHQHO6bn5i3G5oB0v3aAhHQK2GMJemelN1fZQoaAZHQHGD0PDpC8hoB00lAWgIR0CthjCWu5jIdX2UKGgGR0By00JSiudPaAdLv2gIR0CthlsibDuSdX2UKGgGR0Bwmt/b0voNaAdLumgIR0CthoUmlZX/dX2UKGgGR0BxeNt78ejmaAdLvmgIR0CthpTTvy9VdX2UKGgGR0ByWe22G7BgaAdL2GgIR0CthqOGTLW7dX2UKGgGR0BwE5EAo5PuaAdLsWgIR0CthrQs5GSZdX2UKGgGR0BzMUvVVghKaAdL2GgIR0Cths6jN6gNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9ok3S8an76hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed71ca099d80ca0b839dd48325f14693d714c212969d1243a403a1198a69f95f
|
3 |
+
size 147956
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78540d1b2200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78540d1b2290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78540d1b2320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78540d1b23b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78540d1b2440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78540d1b24d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78540d1b2560>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78540d1b25f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78540d1b2680>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78540d1b2710>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78540d1b27a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78540d1b2830>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78540d157240>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2506752,
|
25 |
+
"_total_timesteps": 2500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1707941246870513061,
|
30 |
+
"learning_rate": 0.003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPdEj4n34o/SkUAP/PdFr85QEI+UxqFPgAAAAAAAAAAMysEu0gUhj2u+lO+d8wrvihraL6FE8A9AAAAAAAAAADNGJY8rpmeuvXWEbddTg6yQAlBOuFkKDYAAIA/AACAPzNQ2j2fSFg+uc6NvTzT074oLhM+ZemjvQAAAAAAAAAAM9mcvHaIQj9FhM485cNpv0Ezb727m2g9AAAAAAAAAAAAtUw9PTYeu2Y8qrtTJZU8aM8RPD2MgL0AAIA/AACAP40xPj7wC3Q/3YHGPh0SC79c56A+44EsPgAAAAAAAAAABtsUPqFgZz/kUpQ+ygkyv/UVeT4Q+UA9AAAAAAAAAADzR/s9tkkEPyufmr3nRVi/qJ/iPXLcwb0AAAAAAAAAAPNEmr2cRGy8hLUkPtXWK74Z/4G7a/hkPQAAgD8AAIA/GvmEPeR+lT1CLvO9nOgBv5f4ND3+9/G9AAAAAAAAAADm+Ac+rmCWO0A8sb6HEAi8+gAWPRLuf74AAIA/AACAPzMKtTwU8Ne67vcUPaxHtjwdHea7opecPQAAgD8AAIA/ZvUVvdnBBj7F51s+/pkCv9sujD019Bg+AAAAAAAAAACaZ7k91lAdP9ZLlT3B2kG/p/AXPlJ4dDsAAAAAAAAAADMkjLwchlU9CTW3PYZoHb4Spqo9LbLcPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIxufywwCeMAWyUS86MAXSUR0CtcAnKGL1mdX2UKGgGR0BvjSqwQlKLaAdLpmgIR0CtcB7ItDlYdX2UKGgGR0BzJ2+cpb2UaAdNDgJoCEdArXCapm29c3V9lChoBkdAch8VSn+AE2gHS7JoCEdArXDo/RmbsnV9lChoBkdAcOxUW2w3YWgHS7RoCEdArXDsMiKR+3V9lChoBkdAclPc0tRNy2gHS85oCEdArXD/3+MqBnV9lChoBkdAc5qptJnQIGgHS+loCEdArXEZQHiWFHV9lChoBkdAULhJ4B3iaWgHS4poCEdArXEpc/t6X3V9lChoBkdAUo2A9V3ljmgHS41oCEdArXExmI0qIHV9lChoBkdAcgqL6UJOWWgHS9loCEdArXE455qubXV9lChoBkdAcsph3aBZp2gHS95oCEdArXFVB6a9b3V9lChoBkdAcGYBq9GqgmgHS5loCEdArXF1Wn0kGHV9lChoBkdAcAVq814xDmgHS6loCEdArXGoaFVT73V9lChoBkdAcXKBuXNTtWgHS7xoCEdArXGva6BiC3V9lChoBkdAcmf/ffoA4mgHS/NoCEdArXG0lTm4iHV9lChoBkdAbpxyR0U472gHS7hoCEdArXG3FrEcbXV9lChoBkdAcY4MvysjmmgHS41oCEdArXIQaxX4kHV9lChoBkdAcgkpbD/EO2gHS/FoCEdArXtJItlI3HV9lChoBkdActcNDtw71mgHS/hoCEdArXt4sK9f1HV9lChoBkdActX9UCJXQ2gHS8BoCEdArXuyTB68hHV9lChoBkdAc/wiMYMvy2gHS81oCEdArXvr7yhBaHV9lChoBkdAcfaf+S8rZ2gHS9doCEdArXvzGvOhTXV9lChoBkdAcOUnEETxomgHS8hoCEdArXwRuuRs/XV9lChoBkdAcuR7o0Q9R2gHS9NoCEdArXwpKYiPhnV9lChoBkdAcWtQhfShJ2gHS9FoCEdArXxVBWxQi3V9lChoBkdAcxgqDK5kLGgHS+poCEdArXxbNt65XnV9lChoBkdAcwMpDNQj2WgHS+RoCEdArXxpfx+a0HV9lChoBkdAcrEZNwiqyWgHS9JoCEdArXx9bX6InHV9lChoBkdAchrvFWGRFWgHS8RoCEdArXyOknCwbHV9lChoBkdAcphdv863iWgHS8hoCEdArXymyX2M9HV9lChoBkdAc2fhV2icomgHS9xoCEdArXzWoHcDbXV9lChoBkdAdByuW8h9s2gHS/xoCEdArX0na37UG3V9lChoBkdAc7x+aBqbjWgHS+loCEdArX1gbsF+u3V9lChoBkdAcvsmF8G9pWgHS79oCEdArX1lWXC0nnV9lChoBkdAb89UGVzIWGgHS6poCEdArX2J/LDAJ3V9lChoBkdAcMC4VymygWgHS8FoCEdArX2SdOIqLHV9lChoBkdAcuJvSMLncWgHS7RoCEdArX4diWmgrnV9lChoBkdAcVbgQYk3TGgHS8loCEdArX4p5X2du3V9lChoBkdAcX+E+PikwmgHS6RoCEdArX4zzPKMenV9lChoBkdAcX3YR/ViF2gHS7hoCEdArX5fCyhSL3V9lChoBkdAcxmgG8mKImgHS+NoCEdArX5v/kvK2nV9lChoBkdAcjxYx+KCQWgHS6VoCEdArX56SNfgJnV9lChoBkdAckYRu0kWymgHS95oCEdArX6JMYdhiXV9lChoBkdAccOy9mHxjWgHS8hoCEdArX7G0iQkonV9lChoBkdAcluH9m6GxmgHS89oCEdArX79OM2m53V9lChoBkdAcaEbuc+aB2gHS+ZoCEdArX8JaLXL/3V9lChoBkdAcbyIikfs/2gHS5NoCEdArX+FLUTcqXV9lChoBkdAcyQvYe1a4mgHS9toCEdArX+N2A5Jb3V9lChoBkdAcvhbg0j1PGgHS+doCEdArYAtRWLgoHV9lChoBkdAcSTy1eBxxWgHS9NoCEdArYA1iDujRHV9lChoBkdATla+L3sXzmgHS1ZoCEdArYA/xpcopnV9lChoBkdAc63J0GNaQmgHS8hoCEdArYBHDUExI3V9lChoBkdAcqBtuUD+zmgHS99oCEdArYBdfReC1HV9lChoBkdAcbyrN4Z/C2gHS6NoCEdArYBwYFaB7XV9lChoBkdAct0PFefI0mgHS6loCEdArYCYAlv603V9lChoBkdAcVQT2FnIyWgHS7hoCEdArYC87fYSQHV9lChoBkdAcY7Lg4wRG2gHS7hoCEdArYEYnDziCXV9lChoBkdAcKKlSjxkNGgHS7ZoCEdArYEfAfuCw3V9lChoBkdAcVaf9P1tf2gHS71oCEdArYEfPHDJl3V9lChoBkdAcSj5H3Dej2gHS6toCEdArYExBw++unV9lChoBkdAcKTnLaEi+2gHS6JoCEdArYFHrv9cbHV9lChoBkdAcVV90Rvm5mgHS7poCEdArYIsZgogFHV9lChoBkdAcvs6HCXQdGgHS8RoCEdArYJPvOQhfXV9lChoBkdAch8lImPYF2gHS6NoCEdArYKElkYoAnV9lChoBkdAcnYp6QeV9mgHS6doCEdArYLFpCa7VnV9lChoBkdAcDL9i+cpb2gHS7loCEdArYLPvv0AcXV9lChoBkdAcfV0v4/NaGgHS75oCEdArYLXyTY/V3V9lChoBkdAciEfEXLvC2gHTUMBaAhHQK2C6ytV7yB1fZQoaAZHQHFeuWrwOONoB0u/aAhHQK2C8z/IbOx1fZQoaAZHQHDdsgU1yeZoB0u6aAhHQK2DNHim2st1fZQoaAZHQHL2172L5yloB0vlaAhHQK2DRLIxQBR1fZQoaAZHQHEUYhhYvFpoB0vYaAhHQK2DY4GUwBZ1fZQoaAZHQHJ9SSidrftoB0u+aAhHQK2Dg8kleGB1fZQoaAZHQHBPZSm65G1oB0u6aAhHQK2DiqaPS2J1fZQoaAZHQHIq2/BWPtFoB0u/aAhHQK2Dih24d6t1fZQoaAZHQHDooe9zwMJoB0vAaAhHQK2DqEEC/491fZQoaAZHQHDI1j/dZaFoB0viaAhHQK2D33cpLEl1fZQoaAZHQHDQnYYixFBoB0ugaAhHQK2EY1Muez51fZQoaAZHQHOWDv3JxNtoB0vHaAhHQK2Ea1m8M/h1fZQoaAZHQHIHZyIYWLxoB0vJaAhHQK2Ej3wkPc11fZQoaAZHQHDMGwJPZZloB0vgaAhHQK2Em/QjUut1fZQoaAZHQG+qdjG1hLJoB0uxaAhHQK2EnY4ACGN1fZQoaAZHQHJYTiGWUr1oB0u6aAhHQK2Eoq4pc5d1fZQoaAZHQHFwUL6UJOZoB0vFaAhHQK2E4aR6nix1fZQoaAZHQHIP9OmBOHpoB0v0aAhHQK2FawKSgXd1fZQoaAZHQHPE5dWyTpxoB0u7aAhHQK2FcHzH0bt1fZQoaAZHQHK56hYeT3ZoB0vQaAhHQK2FgVyFPBV1fZQoaAZHQHLm9s3yZrpoB0vlaAhHQK2Fmx6fJ3h1fZQoaAZHQHCLeFlCkXVoB0vJaAhHQK2FmlkYoAp1fZQoaAZHQEjxH3lCCz1oB0t1aAhHQK2FywFkhA51fZQoaAZHQHO1JKjBVMpoB0vlaAhHQK2F3VlwtJ51fZQoaAZHQHIZpv99+gFoB0vSaAhHQK2GC75Ec811fZQoaAZHQHO6bn5i3G5oB0v3aAhHQK2GMJemelN1fZQoaAZHQHGD0PDpC8hoB00lAWgIR0CthjCWu5jIdX2UKGgGR0By00JSiudPaAdLv2gIR0CthlsibDuSdX2UKGgGR0Bwmt/b0voNaAdLumgIR0CthoUmlZX/dX2UKGgGR0BxeNt78ejmaAdLvmgIR0CthpTTvy9VdX2UKGgGR0ByWe22G7BgaAdL2GgIR0CthqOGTLW7dX2UKGgGR0BwE5EAo5PuaAdLsWgIR0CthrQs5GSZdX2UKGgGR0BzMUvVVghKaAdL2GgIR0Cths6jN6gNdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 612,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9ok3S8an76hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ea964ccac32ef78f31bb5ec57974ef2bc601f3805bc81300ae28c9217a1e130
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f43664ac65862d2df37b808a683573098593d7413ad93c74322d2c9fd01bb14c
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (160 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 286.9256796, "std_reward": 13.891439075051917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-14T20:49:04.543610"}
|