--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: legalcase_outcomepred_model results: [] --- # legalcase_outcomepred_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0116 - Accuracy: 0.3307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.7752 | 0.9981 | 132 | 1.8412 | 0.2640 | | 1.6453 | 1.9962 | 264 | 1.8323 | 0.2867 | | 1.6322 | 2.9943 | 396 | 1.7919 | 0.2985 | | 1.4239 | 4.0 | 529 | 1.8052 | 0.3188 | | 1.3082 | 4.9981 | 661 | 1.8625 | 0.3217 | | 1.2395 | 5.9962 | 793 | 1.8780 | 0.3382 | | 1.103 | 6.9943 | 925 | 1.9332 | 0.3302 | | 1.0687 | 8.0 | 1058 | 1.9723 | 0.3382 | | 1.0303 | 8.9981 | 1190 | 2.0012 | 0.3363 | | 0.9643 | 9.9811 | 1320 | 2.0116 | 0.3307 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 3.0.0 - Tokenizers 0.19.1