OubeidAllahjb commited on
Commit
58ec51a
·
1 Parent(s): d6db56a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: POO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.03 +/- 20.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **POO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **POO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1734630dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1734630e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1734630ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1734630f70>", "_build": "<function ActorCriticPolicy._build at 0x7f1734634040>", "forward": "<function ActorCriticPolicy.forward at 0x7f17346340d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1734634160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17346341f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1734634280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1734634310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17346343a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1734634430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f173462e4b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673476444211499799, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1f6DzgcIo+vxEeu91zUr7owO464WkCPgAAAAAAAAAAMztEPbJkVz5IiKM9WVeRvhI0vT0dTn48AAAAAAAAAAAAAOY4j75Iunf4Fr2GTYKvKj6rO4O0kbMAAIA/AACAPzMxi7xsn9a7hUjcvAnCm73H2zy8dZLuvQAAgD8AAIA/gHIoPeEopLpsQrY4skMbNNs4sTpSwM+3AACAPwAAgD8AVDk8w/lruhKZiraxFXixzmc5ui7ipzUAAIA/AACAP83cijspTEm6Hm2xsS2cfC5Iqh+7PV73MgAAgD8AAIA/MCCGPqUfAz/fBym+uuSRvv6XiT2oxfq8AAAAAAAAAAAaWtA9dg5EPTYcob3iqzi+v0S6vCbzDTwAAAAAAAAAADPbazvpj2m8/tkdPADUWT3ah7+9cNnPPAAAgD8AAIA/AI8fPXGtbrvOkle8JkFbPCZt4TxFPTy9AACAPwAAgD8aDR4+dvhmvF10ET60C6287c/TvUZtjL0AAIA/AACAP+b1N728qpQ+uakdPnx7pr7jiZE9YrwGPAAAAAAAAAAAs5+bPQU41j4kyKA8q0iJvlXxuD0gpo09AAAAAAAAAADmWV09qSR+vNqMHL4sC6S9CgP0Pb7dhD4AAIA/AACAP7Otyb2aMiw/RQhjPgHBt76pwyg9g52GPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEXAIVSqYcUCUhpRSlIwBbJRNJwGMAXSUR0ClKi4QBgeBdX2UKGgGaAloD0MIcEBLV7BmbECUhpRSlGgVTRkBaBZHQKUqLhxYJVt1fZQoaAZoCWgPQwgzMshdBD9vQJSGlFKUaBVNFgFoFkdApSssCNjslnV9lChoBmgJaA9DCOnX1k8/33FAlIaUUpRoFU0oAWgWR0ClK2SEcsDodX2UKGgGaAloD0MICqAYWfIRckCUhpRSlGgVTR0BaBZHQKUsXh0hePd1fZQoaAZoCWgPQwiCA1q6gr9vQJSGlFKUaBVNOAFoFkdApSyVcdHUdHV9lChoBmgJaA9DCHKHTWQmw3FAlIaUUpRoFU0IAWgWR0ClLJh+4LCvdX2UKGgGaAloD0MI10//WfNpb0CUhpRSlGgVS/1oFkdApSyd56dDpnV9lChoBmgJaA9DCCoZAKp4u3BAlIaUUpRoFU0PAWgWR0ClLK2hRIjGdX2UKGgGaAloD0MIyQORRZricUCUhpRSlGgVTREBaBZHQKUs3CZWq951fZQoaAZoCWgPQwj0wMdgxYdyQJSGlFKUaBVNEQFoFkdApSzc2gnMMnV9lChoBmgJaA9DCIkK1c3FtW5AlIaUUpRoFU0KAWgWR0ClLSwJgLJCdX2UKGgGaAloD0MIrOC3IcZgb0CUhpRSlGgVTUsBaBZHQKUtTIGyHEd1fZQoaAZoCWgPQwi7mdGPBqluQJSGlFKUaBVNJgFoFkdApS1z8P4EfXV9lChoBmgJaA9DCEVlw5pKA3NAlIaUUpRoFU0KAWgWR0ClLXfcer+6dX2UKGgGaAloD0MIucfShy5zbECUhpRSlGgVTQkBaBZHQKUtpqtYB/91fZQoaAZoCWgPQwgZxt0g2vBuQJSGlFKUaBVNGAFoFkdApS4gob4rSXV9lChoBmgJaA9DCA5qv7WTyXBAlIaUUpRoFU0rAWgWR0ClLlaEi+tbdX2UKGgGaAloD0MItcU1PpNecUCUhpRSlGgVTQEBaBZHQKUuwUHpr1x1fZQoaAZoCWgPQwhDGhU42f9vQJSGlFKUaBVNPgFoFkdApS/yg2606nV9lChoBmgJaA9DCNzWFp4XfnBAlIaUUpRoFU0LAWgWR0ClMD1BMSK4dX2UKGgGaAloD0MIfH4YITwibkCUhpRSlGgVTQcBaBZHQKUwQ0dBBzF1fZQoaAZoCWgPQwjmyqDa4P9xQJSGlFKUaBVL/GgWR0ClMEhZha1UdX2UKGgGaAloD0MIDAOWXMVTb0CUhpRSlGgVTRwBaBZHQKUwipkwvg51fZQoaAZoCWgPQwiUvDrHAJNxQJSGlFKUaBVNKwFoFkdApTCRkf9xZXV9lChoBmgJaA9DCAiUTblCmXBAlIaUUpRoFU0oAWgWR0ClMLQjdHlPdX2UKGgGaAloD0MIHottUlH1cECUhpRSlGgVTRYBaBZHQKUwsvdM0xd1fZQoaAZoCWgPQwjbbKzE/JlwQJSGlFKUaBVNAgFoFkdApTEHr6ciGHV9lChoBmgJaA9DCDi7tUwGB29AlIaUUpRoFU0RAWgWR0ClMUB/y5I6dX2UKGgGaAloD0MIGSDRBMrEcECUhpRSlGgVTR0BaBZHQKUxPyc0+C91fZQoaAZoCWgPQwjc2VceJPFxQJSGlFKUaBVNDAFoFkdApTFjgqEvkHV9lChoBmgJaA9DCEut9xst0HJAlIaUUpRoFU06AWgWR0ClMX5E2HcldX2UKGgGaAloD0MIEB/Y8R9qcUCUhpRSlGgVTQEBaBZHQKUx+LZSNwR1fZQoaAZoCWgPQwgAVdy4xTptQJSGlFKUaBVNKAFoFkdApTI0OmR/3HV9lChoBmgJaA9DCFU01v5OEXBAlIaUUpRoFU0zAWgWR0ClMx0Cih38dX2UKGgGaAloD0MI+fiE7Py/cUCUhpRSlGgVTQYBaBZHQKUz4jqOcUd1fZQoaAZoCWgPQwiynITSl9hxQJSGlFKUaBVNIgFoFkdApTQYOWjXWnV9lChoBmgJaA9DCDrJVpdTWW9AlIaUUpRoFU0dAWgWR0ClNEvacqe9dX2UKGgGaAloD0MIIAn7dpJgbUCUhpRSlGgVTSABaBZHQKU00pOvdM11fZQoaAZoCWgPQwiiuONNPjZzQJSGlFKUaBVNQQFoFkdApTTyXdCVr3V9lChoBmgJaA9DCJNzYg9tVHJAlIaUUpRoFU03AWgWR0ClNQu1F6RhdX2UKGgGaAloD0MI7u2W5MB8cECUhpRSlGgVTToBaBZHQKU1IWac7Qt1fZQoaAZoCWgPQwhjmBO0SQRxQJSGlFKUaBVNPAFoFkdApTVQLb5/LHV9lChoBmgJaA9DCNrlWx/Wv3BAlIaUUpRoFU0XAWgWR0ClNVnoxHoYdX2UKGgGaAloD0MIwTkjSvvBckCUhpRSlGgVTQcBaBZHQKU1Ziz9jwx1fZQoaAZoCWgPQwiyu0BJwaBwQJSGlFKUaBVNFAFoFkdApTV0PjGT93V9lChoBmgJaA9DCNzxJr9FvXBAlIaUUpRoFU00AWgWR0ClNYZeiSJTdX2UKGgGaAloD0MIRtEDH0NOckCUhpRSlGgVTSQBaBZHQKU1g76pHZt1fZQoaAZoCWgPQwjGihpMA9RxQJSGlFKUaBVNEgFoFkdApUINxp+MInV9lChoBmgJaA9DCOf8FMfBfXBAlIaUUpRoFU02AWgWR0ClQj3LvCuVdX2UKGgGaAloD0MIxCRcyCMIcUCUhpRSlGgVTQgBaBZHQKVCuMn7YTV1fZQoaAZoCWgPQwiU+NwJdmZxQJSGlFKUaBVNFgFoFkdApUOqw+t8u3V9lChoBmgJaA9DCM45eCY0u25AlIaUUpRoFU0RAWgWR0ClQ8xVp9JCdX2UKGgGaAloD0MIG0ZB8PiGcECUhpRSlGgVTREBaBZHQKVEA4lQdjp1fZQoaAZoCWgPQwhoWIy61o5yQJSGlFKUaBVNCAFoFkdApURX557gKnV9lChoBmgJaA9DCK6AQj09pXJAlIaUUpRoFU0DAWgWR0ClRF6HsTnJdX2UKGgGaAloD0MIT5Za7/dvckCUhpRSlGgVTRABaBZHQKVEuWZZ0S11fZQoaAZoCWgPQwiWJTrLbMVwQJSGlFKUaBVNCwFoFkdApUTP+MqBmXV9lChoBmgJaA9DCKDctu9RUXBAlIaUUpRoFU0LAWgWR0ClRNowdsBRdX2UKGgGaAloD0MIou2YuitIbECUhpRSlGgVTR0BaBZHQKVE3KNAC4l1fZQoaAZoCWgPQwhVoYFYNtRxQJSGlFKUaBVNCAFoFkdApUTou01IiHV9lChoBmgJaA9DCA9j0t/L13BAlIaUUpRoFU0EAWgWR0ClROyL61stdX2UKGgGaAloD0MIlWHcDeIOcUCUhpRSlGgVTSwBaBZHQKVFPs7+1jR1fZQoaAZoCWgPQwga4IJs2XlxQJSGlFKUaBVNKwFoFkdApUVXdbgTAXV9lChoBmgJaA9DCFacai2MJHJAlIaUUpRoFUv/aBZHQKVFvAhStNl1fZQoaAZoCWgPQwib5bLROShzQJSGlFKUaBVNHgFoFkdApUXpxrBTGnV9lChoBmgJaA9DCBxeEJGab3NAlIaUUpRoFU0aAWgWR0ClRo/OdGy5dX2UKGgGaAloD0MI48Yt5mf1bkCUhpRSlGgVTQUBaBZHQKVHJSHdoFp1fZQoaAZoCWgPQwhp/MIrSeZxQJSGlFKUaBVNCgFoFkdApUdZfICEH3V9lChoBmgJaA9DCG3GaYjqd3FAlIaUUpRoFU0KAWgWR0ClR/JOerdWdX2UKGgGaAloD0MIppvEIDCwckCUhpRSlGgVTR0BaBZHQKVIQ7YkE9t1fZQoaAZoCWgPQwjYRGYusDRxQJSGlFKUaBVNCAFoFkdApUhXjS5RTHV9lChoBmgJaA9DCAcnol9b6XBAlIaUUpRoFU0GAWgWR0ClSG2iL2pRdX2UKGgGaAloD0MI7zzxnG0Uc0CUhpRSlGgVTUQBaBZHQKVIi8274BV1fZQoaAZoCWgPQwh5zhYQGu9wQJSGlFKUaBVNEgFoFkdApUiTnRsuWnV9lChoBmgJaA9DCCANp8zNOnJAlIaUUpRoFU0NAWgWR0ClSJ10cOsldX2UKGgGaAloD0MINnaJ6q2IckCUhpRSlGgVTScBaBZHQKVI4hyKekJ1fZQoaAZoCWgPQwgonUgw1UByQJSGlFKUaBVNEgFoFkdApUkwR9PUKHV9lChoBmgJaA9DCC4AjdIlqHBAlIaUUpRoFU06AWgWR0ClSS4zrNW3dX2UKGgGaAloD0MIN43ttSA+cECUhpRSlGgVTR4BaBZHQKVJOoUi6hB1fZQoaAZoCWgPQwgNGY9SCTJwQJSGlFKUaBVNAAFoFkdApUmF4mkWRHV9lChoBmgJaA9DCLnH0oeuaXJAlIaUUpRoFU0qAWgWR0ClSdDSgGr0dX2UKGgGaAloD0MI68a7I2M1TkCUhpRSlGgVS8hoFkdApUnoTZg5R3V9lChoBmgJaA9DCFJhbCHINXJAlIaUUpRoFUv8aBZHQKVKCNH6Mzd1fZQoaAZoCWgPQwjmBdhHJ4huQJSGlFKUaBVNHgFoFkdApUsfGuLaVXV9lChoBmgJaA9DCGfyzTa3F3BAlIaUUpRoFUv+aBZHQKVLbtpEhJR1fZQoaAZoCWgPQwgRpiiXxmBuQJSGlFKUaBVNAgFoFkdApUvR/7SApnV9lChoBmgJaA9DCMWScve5A3FAlIaUUpRoFU0wAWgWR0ClS/ga3qiXdX2UKGgGaAloD0MIHEKVmj1eb0CUhpRSlGgVS/VoFkdApUwA9aEBbXV9lChoBmgJaA9DCM7fhEJEWHJAlIaUUpRoFU0LAWgWR0ClTARSYPXkdX2UKGgGaAloD0MIiLmkarvJcECUhpRSlGgVTRsBaBZHQKVMEKD01651fZQoaAZoCWgPQwhI4uXp3NtxQJSGlFKUaBVNKQFoFkdApUwtb7j1f3V9lChoBmgJaA9DCIIeattwdHFAlIaUUpRoFU0fAWgWR0ClTDfWlMyrdX2UKGgGaAloD0MIineAJy0mckCUhpRSlGgVTQoBaBZHQKVMjUBGQS11fZQoaAZoCWgPQwhOJm4VBBxwQJSGlFKUaBVNGAFoFkdApUzGbPQfIXV9lChoBmgJaA9DCEd3EDtTL29AlIaUUpRoFU0gAWgWR0ClTNVoYekpdX2UKGgGaAloD0MIxEMYP42wckCUhpRSlGgVTQ8BaBZHQKVNAMZxaPl1fZQoaAZoCWgPQwjqQUEpGp1yQJSGlFKUaBVNDgFoFkdApU1HLmp2lnV9lChoBmgJaA9DCJUMAFUcQnJAlIaUUpRoFU0JAWgWR0ClTVAYxcmjdX2UKGgGaAloD0MIuY5xxcVGb0CUhpRSlGgVTQcBaBZHQKVNbGZNO/N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fed0ef7ec223bd018e2af036c7ee3068314c1fb2af1360392b9d0172562f586
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1734630dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1734630e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1734630ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1734630f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1734634040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f17346340d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1734634160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17346341f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1734634280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1734634310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17346343a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1734634430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f173462e4b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673476444211499799,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1f6DzgcIo+vxEeu91zUr7owO464WkCPgAAAAAAAAAAMztEPbJkVz5IiKM9WVeRvhI0vT0dTn48AAAAAAAAAAAAAOY4j75Iunf4Fr2GTYKvKj6rO4O0kbMAAIA/AACAPzMxi7xsn9a7hUjcvAnCm73H2zy8dZLuvQAAgD8AAIA/gHIoPeEopLpsQrY4skMbNNs4sTpSwM+3AACAPwAAgD8AVDk8w/lruhKZiraxFXixzmc5ui7ipzUAAIA/AACAP83cijspTEm6Hm2xsS2cfC5Iqh+7PV73MgAAgD8AAIA/MCCGPqUfAz/fBym+uuSRvv6XiT2oxfq8AAAAAAAAAAAaWtA9dg5EPTYcob3iqzi+v0S6vCbzDTwAAAAAAAAAADPbazvpj2m8/tkdPADUWT3ah7+9cNnPPAAAgD8AAIA/AI8fPXGtbrvOkle8JkFbPCZt4TxFPTy9AACAPwAAgD8aDR4+dvhmvF10ET60C6287c/TvUZtjL0AAIA/AACAP+b1N728qpQ+uakdPnx7pr7jiZE9YrwGPAAAAAAAAAAAs5+bPQU41j4kyKA8q0iJvlXxuD0gpo09AAAAAAAAAADmWV09qSR+vNqMHL4sC6S9CgP0Pb7dhD4AAIA/AACAP7Otyb2aMiw/RQhjPgHBt76pwyg9g52GPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEXAIVSqYcUCUhpRSlIwBbJRNJwGMAXSUR0ClKi4QBgeBdX2UKGgGaAloD0MIcEBLV7BmbECUhpRSlGgVTRkBaBZHQKUqLhxYJVt1fZQoaAZoCWgPQwgzMshdBD9vQJSGlFKUaBVNFgFoFkdApSssCNjslnV9lChoBmgJaA9DCOnX1k8/33FAlIaUUpRoFU0oAWgWR0ClK2SEcsDodX2UKGgGaAloD0MICqAYWfIRckCUhpRSlGgVTR0BaBZHQKUsXh0hePd1fZQoaAZoCWgPQwiCA1q6gr9vQJSGlFKUaBVNOAFoFkdApSyVcdHUdHV9lChoBmgJaA9DCHKHTWQmw3FAlIaUUpRoFU0IAWgWR0ClLJh+4LCvdX2UKGgGaAloD0MI10//WfNpb0CUhpRSlGgVS/1oFkdApSyd56dDpnV9lChoBmgJaA9DCCoZAKp4u3BAlIaUUpRoFU0PAWgWR0ClLK2hRIjGdX2UKGgGaAloD0MIyQORRZricUCUhpRSlGgVTREBaBZHQKUs3CZWq951fZQoaAZoCWgPQwj0wMdgxYdyQJSGlFKUaBVNEQFoFkdApSzc2gnMMnV9lChoBmgJaA9DCIkK1c3FtW5AlIaUUpRoFU0KAWgWR0ClLSwJgLJCdX2UKGgGaAloD0MIrOC3IcZgb0CUhpRSlGgVTUsBaBZHQKUtTIGyHEd1fZQoaAZoCWgPQwi7mdGPBqluQJSGlFKUaBVNJgFoFkdApS1z8P4EfXV9lChoBmgJaA9DCEVlw5pKA3NAlIaUUpRoFU0KAWgWR0ClLXfcer+6dX2UKGgGaAloD0MIucfShy5zbECUhpRSlGgVTQkBaBZHQKUtpqtYB/91fZQoaAZoCWgPQwgZxt0g2vBuQJSGlFKUaBVNGAFoFkdApS4gob4rSXV9lChoBmgJaA9DCA5qv7WTyXBAlIaUUpRoFU0rAWgWR0ClLlaEi+tbdX2UKGgGaAloD0MItcU1PpNecUCUhpRSlGgVTQEBaBZHQKUuwUHpr1x1fZQoaAZoCWgPQwhDGhU42f9vQJSGlFKUaBVNPgFoFkdApS/yg2606nV9lChoBmgJaA9DCNzWFp4XfnBAlIaUUpRoFU0LAWgWR0ClMD1BMSK4dX2UKGgGaAloD0MIfH4YITwibkCUhpRSlGgVTQcBaBZHQKUwQ0dBBzF1fZQoaAZoCWgPQwjmyqDa4P9xQJSGlFKUaBVL/GgWR0ClMEhZha1UdX2UKGgGaAloD0MIDAOWXMVTb0CUhpRSlGgVTRwBaBZHQKUwipkwvg51fZQoaAZoCWgPQwiUvDrHAJNxQJSGlFKUaBVNKwFoFkdApTCRkf9xZXV9lChoBmgJaA9DCAiUTblCmXBAlIaUUpRoFU0oAWgWR0ClMLQjdHlPdX2UKGgGaAloD0MIHottUlH1cECUhpRSlGgVTRYBaBZHQKUwsvdM0xd1fZQoaAZoCWgPQwjbbKzE/JlwQJSGlFKUaBVNAgFoFkdApTEHr6ciGHV9lChoBmgJaA9DCDi7tUwGB29AlIaUUpRoFU0RAWgWR0ClMUB/y5I6dX2UKGgGaAloD0MIGSDRBMrEcECUhpRSlGgVTR0BaBZHQKUxPyc0+C91fZQoaAZoCWgPQwjc2VceJPFxQJSGlFKUaBVNDAFoFkdApTFjgqEvkHV9lChoBmgJaA9DCEut9xst0HJAlIaUUpRoFU06AWgWR0ClMX5E2HcldX2UKGgGaAloD0MIEB/Y8R9qcUCUhpRSlGgVTQEBaBZHQKUx+LZSNwR1fZQoaAZoCWgPQwgAVdy4xTptQJSGlFKUaBVNKAFoFkdApTI0OmR/3HV9lChoBmgJaA9DCFU01v5OEXBAlIaUUpRoFU0zAWgWR0ClMx0Cih38dX2UKGgGaAloD0MI+fiE7Py/cUCUhpRSlGgVTQYBaBZHQKUz4jqOcUd1fZQoaAZoCWgPQwiynITSl9hxQJSGlFKUaBVNIgFoFkdApTQYOWjXWnV9lChoBmgJaA9DCDrJVpdTWW9AlIaUUpRoFU0dAWgWR0ClNEvacqe9dX2UKGgGaAloD0MIIAn7dpJgbUCUhpRSlGgVTSABaBZHQKU00pOvdM11fZQoaAZoCWgPQwiiuONNPjZzQJSGlFKUaBVNQQFoFkdApTTyXdCVr3V9lChoBmgJaA9DCJNzYg9tVHJAlIaUUpRoFU03AWgWR0ClNQu1F6RhdX2UKGgGaAloD0MI7u2W5MB8cECUhpRSlGgVTToBaBZHQKU1IWac7Qt1fZQoaAZoCWgPQwhjmBO0SQRxQJSGlFKUaBVNPAFoFkdApTVQLb5/LHV9lChoBmgJaA9DCNrlWx/Wv3BAlIaUUpRoFU0XAWgWR0ClNVnoxHoYdX2UKGgGaAloD0MIwTkjSvvBckCUhpRSlGgVTQcBaBZHQKU1Ziz9jwx1fZQoaAZoCWgPQwiyu0BJwaBwQJSGlFKUaBVNFAFoFkdApTV0PjGT93V9lChoBmgJaA9DCNzxJr9FvXBAlIaUUpRoFU00AWgWR0ClNYZeiSJTdX2UKGgGaAloD0MIRtEDH0NOckCUhpRSlGgVTSQBaBZHQKU1g76pHZt1fZQoaAZoCWgPQwjGihpMA9RxQJSGlFKUaBVNEgFoFkdApUINxp+MInV9lChoBmgJaA9DCOf8FMfBfXBAlIaUUpRoFU02AWgWR0ClQj3LvCuVdX2UKGgGaAloD0MIxCRcyCMIcUCUhpRSlGgVTQgBaBZHQKVCuMn7YTV1fZQoaAZoCWgPQwiU+NwJdmZxQJSGlFKUaBVNFgFoFkdApUOqw+t8u3V9lChoBmgJaA9DCM45eCY0u25AlIaUUpRoFU0RAWgWR0ClQ8xVp9JCdX2UKGgGaAloD0MIG0ZB8PiGcECUhpRSlGgVTREBaBZHQKVEA4lQdjp1fZQoaAZoCWgPQwhoWIy61o5yQJSGlFKUaBVNCAFoFkdApURX557gKnV9lChoBmgJaA9DCK6AQj09pXJAlIaUUpRoFU0DAWgWR0ClRF6HsTnJdX2UKGgGaAloD0MIT5Za7/dvckCUhpRSlGgVTRABaBZHQKVEuWZZ0S11fZQoaAZoCWgPQwiWJTrLbMVwQJSGlFKUaBVNCwFoFkdApUTP+MqBmXV9lChoBmgJaA9DCKDctu9RUXBAlIaUUpRoFU0LAWgWR0ClRNowdsBRdX2UKGgGaAloD0MIou2YuitIbECUhpRSlGgVTR0BaBZHQKVE3KNAC4l1fZQoaAZoCWgPQwhVoYFYNtRxQJSGlFKUaBVNCAFoFkdApUTou01IiHV9lChoBmgJaA9DCA9j0t/L13BAlIaUUpRoFU0EAWgWR0ClROyL61stdX2UKGgGaAloD0MIlWHcDeIOcUCUhpRSlGgVTSwBaBZHQKVFPs7+1jR1fZQoaAZoCWgPQwga4IJs2XlxQJSGlFKUaBVNKwFoFkdApUVXdbgTAXV9lChoBmgJaA9DCFacai2MJHJAlIaUUpRoFUv/aBZHQKVFvAhStNl1fZQoaAZoCWgPQwib5bLROShzQJSGlFKUaBVNHgFoFkdApUXpxrBTGnV9lChoBmgJaA9DCBxeEJGab3NAlIaUUpRoFU0aAWgWR0ClRo/OdGy5dX2UKGgGaAloD0MI48Yt5mf1bkCUhpRSlGgVTQUBaBZHQKVHJSHdoFp1fZQoaAZoCWgPQwhp/MIrSeZxQJSGlFKUaBVNCgFoFkdApUdZfICEH3V9lChoBmgJaA9DCG3GaYjqd3FAlIaUUpRoFU0KAWgWR0ClR/JOerdWdX2UKGgGaAloD0MIppvEIDCwckCUhpRSlGgVTR0BaBZHQKVIQ7YkE9t1fZQoaAZoCWgPQwjYRGYusDRxQJSGlFKUaBVNCAFoFkdApUhXjS5RTHV9lChoBmgJaA9DCAcnol9b6XBAlIaUUpRoFU0GAWgWR0ClSG2iL2pRdX2UKGgGaAloD0MI7zzxnG0Uc0CUhpRSlGgVTUQBaBZHQKVIi8274BV1fZQoaAZoCWgPQwh5zhYQGu9wQJSGlFKUaBVNEgFoFkdApUiTnRsuWnV9lChoBmgJaA9DCCANp8zNOnJAlIaUUpRoFU0NAWgWR0ClSJ10cOsldX2UKGgGaAloD0MINnaJ6q2IckCUhpRSlGgVTScBaBZHQKVI4hyKekJ1fZQoaAZoCWgPQwgonUgw1UByQJSGlFKUaBVNEgFoFkdApUkwR9PUKHV9lChoBmgJaA9DCC4AjdIlqHBAlIaUUpRoFU06AWgWR0ClSS4zrNW3dX2UKGgGaAloD0MIN43ttSA+cECUhpRSlGgVTR4BaBZHQKVJOoUi6hB1fZQoaAZoCWgPQwgNGY9SCTJwQJSGlFKUaBVNAAFoFkdApUmF4mkWRHV9lChoBmgJaA9DCLnH0oeuaXJAlIaUUpRoFU0qAWgWR0ClSdDSgGr0dX2UKGgGaAloD0MI68a7I2M1TkCUhpRSlGgVS8hoFkdApUnoTZg5R3V9lChoBmgJaA9DCFJhbCHINXJAlIaUUpRoFUv8aBZHQKVKCNH6Mzd1fZQoaAZoCWgPQwjmBdhHJ4huQJSGlFKUaBVNHgFoFkdApUsfGuLaVXV9lChoBmgJaA9DCGfyzTa3F3BAlIaUUpRoFUv+aBZHQKVLbtpEhJR1fZQoaAZoCWgPQwgRpiiXxmBuQJSGlFKUaBVNAgFoFkdApUvR/7SApnV9lChoBmgJaA9DCMWScve5A3FAlIaUUpRoFU0wAWgWR0ClS/ga3qiXdX2UKGgGaAloD0MIHEKVmj1eb0CUhpRSlGgVS/VoFkdApUwA9aEBbXV9lChoBmgJaA9DCM7fhEJEWHJAlIaUUpRoFU0LAWgWR0ClTARSYPXkdX2UKGgGaAloD0MIiLmkarvJcECUhpRSlGgVTRsBaBZHQKVMEKD01651fZQoaAZoCWgPQwhI4uXp3NtxQJSGlFKUaBVNKQFoFkdApUwtb7j1f3V9lChoBmgJaA9DCIIeattwdHFAlIaUUpRoFU0fAWgWR0ClTDfWlMyrdX2UKGgGaAloD0MIineAJy0mckCUhpRSlGgVTQoBaBZHQKVMjUBGQS11fZQoaAZoCWgPQwhOJm4VBBxwQJSGlFKUaBVNGAFoFkdApUzGbPQfIXV9lChoBmgJaA9DCEd3EDtTL29AlIaUUpRoFU0gAWgWR0ClTNVoYekpdX2UKGgGaAloD0MIxEMYP42wckCUhpRSlGgVTQ8BaBZHQKVNAMZxaPl1fZQoaAZoCWgPQwjqQUEpGp1yQJSGlFKUaBVNDgFoFkdApU1HLmp2lnV9lChoBmgJaA9DCJUMAFUcQnJAlIaUUpRoFU0JAWgWR0ClTVAYxcmjdX2UKGgGaAloD0MIuY5xxcVGb0CUhpRSlGgVTQcBaBZHQKVNbGZNO/N1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 276,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6413f48c2ba00e699b2378575c3f9c526a4d71aaa9021324e40cb4b8eb3bf3d
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf34dad2ef5bee9d4f46f81074fdd0f8d92ba32be5099556c62db8194c87fcb6
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (212 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.0300016023308, "std_reward": 20.557355964549032, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T23:30:24.790307"}