Add configuration_jamba.py
Browse files- configuration_jamba.py +213 -0
configuration_jamba.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Jamba model configuration"""
|
16 |
+
import math
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class JambaConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a
|
28 |
+
Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
29 |
+
with the defaults will yield a similar configuration to that of the jamba-small architecture.
|
30 |
+
|
31 |
+
[ai21labs/jamba-small](https://huggingface.co/ai21labs/Jamba-v0.1)
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 65536):
|
39 |
+
Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`JambaModel`]
|
41 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
42 |
+
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
|
43 |
+
model has a output word embedding layer.
|
44 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
45 |
+
Dimension of the hidden representations.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
47 |
+
Dimension of the MLP representations.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
49 |
+
Number of hidden layers in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
60 |
+
The non-linear activation function (function or string) in the decoder.
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
64 |
+
The epsilon used by the rms normalization layers.
|
65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
67 |
+
relevant if `config.is_decoder=True`.
|
68 |
+
calc_logits_for_entire_prompt (`bool`, *optional*, defaults to `False`):
|
69 |
+
Whether or not to calculate logits for entire prompt during generation. If `False`, only the logits of the
|
70 |
+
last prompt token will be calculated, which are the only logits needed for generation. For long sequences,
|
71 |
+
the logits for the entire sequence may use a lot of memory so setting `calc_logits_for_entire_prompt=False`
|
72 |
+
will reduce memory footprint significantly.
|
73 |
+
Note: some generation features may not be available if this is set to `False`.
|
74 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
75 |
+
Whether or not the router logits should be returned by the model. Enabling this will also
|
76 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
77 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
78 |
+
The aux loss factor for the total loss.
|
79 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
80 |
+
The id of the padding token.
|
81 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
82 |
+
The id of the "beginning-of-sequence" token.
|
83 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
84 |
+
The id of the "end-of-sequence" token.
|
85 |
+
sliding_window (`int`, *optional*):
|
86 |
+
Sliding window attention window size. If not specified, will default to `None`.
|
87 |
+
n_ctx (`int`, *optional*, defaults to 262144):
|
88 |
+
This value doesn't have any real effect. The maximum sequence length that this model is intended to be
|
89 |
+
used with. It can be used with longer sequences, but performance may degrade.
|
90 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
91 |
+
The dropout ratio for the attention probabilities.
|
92 |
+
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
93 |
+
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
94 |
+
parameter
|
95 |
+
num_experts (`int`, *optional*, defaults to 16):
|
96 |
+
Number of experts per Sparse MLP layer.
|
97 |
+
expert_layer_period (`int`, *optional*, defaults to 2):
|
98 |
+
Once in this many layers, we will have an expert layer
|
99 |
+
expert_layer_offset (`int`, *optional*, defaults to 1):
|
100 |
+
The first layer index that contains an expert mlp layer
|
101 |
+
attn_layer_period (`int`, *optional*, defaults to 8):
|
102 |
+
Once in this many layers, we will have a vanilla attention layer
|
103 |
+
attn_layer_offset (`int`, *optional*, defaults to 4):
|
104 |
+
The first layer index that contains a vanilla attention mlp layer
|
105 |
+
use_mamba_kernels (`bool`, *optional*, defaults to `True`):
|
106 |
+
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
|
107 |
+
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if
|
108 |
+
`True` and kernels are not available
|
109 |
+
mamba_d_state (`int`, *optional*, defaults to 16):
|
110 |
+
The dimension the mamba state space latents
|
111 |
+
mamba_d_conv (`int`, *optional*, defaults to 4):
|
112 |
+
The size of the mamba convolution kernel
|
113 |
+
mamba_expand (`int`, *optional*, defaults to 2):
|
114 |
+
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
|
115 |
+
mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
116 |
+
Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
117 |
+
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
|
118 |
+
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
|
119 |
+
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
|
120 |
+
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
|
121 |
+
mamba_inner_layernorms (`bool`, *optional*, defaults to `True`):
|
122 |
+
Flag indicating whether or not to apply layernorms to internal mamba activations
|
123 |
+
|
124 |
+
"""
|
125 |
+
|
126 |
+
model_type = "jamba"
|
127 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
vocab_size=65536,
|
132 |
+
tie_word_embeddings=False,
|
133 |
+
hidden_size=4096,
|
134 |
+
intermediate_size=14336,
|
135 |
+
num_hidden_layers=32,
|
136 |
+
num_attention_heads=32,
|
137 |
+
num_key_value_heads=8,
|
138 |
+
hidden_act="silu",
|
139 |
+
initializer_range=0.02,
|
140 |
+
rms_norm_eps=1e-6,
|
141 |
+
use_cache=True,
|
142 |
+
calc_logits_for_entire_prompt=False,
|
143 |
+
output_router_logits=False,
|
144 |
+
router_aux_loss_coef=0.001,
|
145 |
+
pad_token_id=0,
|
146 |
+
bos_token_id=1,
|
147 |
+
eos_token_id=2,
|
148 |
+
sliding_window=None,
|
149 |
+
n_ctx=262144,
|
150 |
+
attention_dropout=0.0,
|
151 |
+
num_experts_per_tok=2,
|
152 |
+
num_experts=16,
|
153 |
+
expert_layer_period=2,
|
154 |
+
expert_layer_offset=1,
|
155 |
+
attn_layer_period=8,
|
156 |
+
attn_layer_offset=4,
|
157 |
+
use_mamba_kernels=True,
|
158 |
+
mamba_d_state=16,
|
159 |
+
mamba_d_conv=4,
|
160 |
+
mamba_expand=2,
|
161 |
+
mamba_dt_rank="auto",
|
162 |
+
mamba_conv_bias=True,
|
163 |
+
mamba_proj_bias=False,
|
164 |
+
mamba_inner_layernorms=True,
|
165 |
+
**kwargs,
|
166 |
+
):
|
167 |
+
self.vocab_size = vocab_size
|
168 |
+
self.tie_word_embeddings = tie_word_embeddings
|
169 |
+
self.hidden_size = hidden_size
|
170 |
+
self.intermediate_size = intermediate_size
|
171 |
+
self.num_hidden_layers = num_hidden_layers
|
172 |
+
self.num_attention_heads = num_attention_heads
|
173 |
+
self.sliding_window = sliding_window
|
174 |
+
self.n_ctx = n_ctx
|
175 |
+
self.attention_dropout = attention_dropout
|
176 |
+
|
177 |
+
# for backward compatibility
|
178 |
+
if num_key_value_heads is None:
|
179 |
+
num_key_value_heads = num_attention_heads
|
180 |
+
|
181 |
+
self.num_key_value_heads = num_key_value_heads
|
182 |
+
self.hidden_act = hidden_act
|
183 |
+
self.initializer_range = initializer_range
|
184 |
+
self.rms_norm_eps = rms_norm_eps
|
185 |
+
|
186 |
+
self.use_cache = use_cache
|
187 |
+
self.calc_logits_for_entire_prompt = calc_logits_for_entire_prompt
|
188 |
+
self.output_router_logits = output_router_logits
|
189 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
190 |
+
|
191 |
+
self.num_experts_per_tok = num_experts_per_tok
|
192 |
+
self.num_experts = num_experts
|
193 |
+
self.expert_layer_period = expert_layer_period
|
194 |
+
self.expert_layer_offset = expert_layer_offset
|
195 |
+
self.attn_layer_period = attn_layer_period
|
196 |
+
self.attn_layer_offset = attn_layer_offset
|
197 |
+
|
198 |
+
self.use_mamba_kernels = use_mamba_kernels
|
199 |
+
self.mamba_d_state = mamba_d_state
|
200 |
+
self.mamba_d_conv = mamba_d_conv
|
201 |
+
self.mamba_expand = mamba_expand
|
202 |
+
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
|
203 |
+
self.mamba_conv_bias = mamba_conv_bias
|
204 |
+
self.mamba_proj_bias = mamba_proj_bias
|
205 |
+
self.mamba_inner_layernorms = mamba_inner_layernorms
|
206 |
+
|
207 |
+
super().__init__(
|
208 |
+
pad_token_id=pad_token_id,
|
209 |
+
bos_token_id=bos_token_id,
|
210 |
+
eos_token_id=eos_token_id,
|
211 |
+
tie_word_embeddings=tie_word_embeddings,
|
212 |
+
**kwargs,
|
213 |
+
)
|