File size: 1,326 Bytes
343a0ca 6760956 12125a7 343a0ca 12125a7 7975ebb 12125a7 1b13348 12125a7 7870fc6 12125a7 7975ebb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
license: apache-2.0
base_model: runwayml/stable-diffusion-v1-5
datasets:
- Oysiyl/google-android-toy
language:
- en
---
### Demo
You can try the demo [here](https://sdloraandroidtoy.streamlit.app/).
For hosting the [frontend](https://github.com/dmitriy-kisil/sd_lora_android_toy_frontend) part [Streamlit Community Cloud](https://streamlit.io/cloud) and [Cerebrium](https://www.cerebrium.ai/) for the [backend](https://github.com/dmitriy-kisil/sd_lora_android_toy_backend) part were used.
### Model card
Finetuned from SD 1.5 using LoRA.
W&B [run](https://wandb.ai/logart1995/text2image-fine-tune/runs/2o98mhc7?workspace=user-logart1995).
### Inference
```py
from diffusers import AutoPipelineForText2Image
import torch
pipe = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe.load_lora_weights("Oysiyl/sd-lora-android-google-toy", weights="pytorch_lora_weights.safetensors")
pipe = pipe.to("cuda")
g = torch.Generator(device="cuda").manual_seed(42)
image = pipe("An android toy near Eiffel tower",
num_inference_steps=50,
num_images_per_prompt=1,
guidance_scale=7.5,
temperature=1.0,
generator=g).images[0]
image.save("android_toy.png")
```
### Output
![example](./android_toy.png)
|