Create handler.py
Browse files- handler.py +104 -0
handler.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Text, Any
|
2 |
+
import re
|
3 |
+
from transformers import SpeechT5ForTextToSpeech
|
4 |
+
from transformers import SpeechT5Processor
|
5 |
+
from transformers import SpeechT5HifiGan
|
6 |
+
import soundfile
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# set device
|
11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
+
if device.type != 'cuda':
|
13 |
+
raise ValueError("need to run on GPU")
|
14 |
+
# set mixed precision dtype
|
15 |
+
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
16 |
+
|
17 |
+
|
18 |
+
class EndpointHandler():
|
19 |
+
def __init__(self, path=""):
|
20 |
+
# Load all required models
|
21 |
+
self.model_id = "Oysiyl/speecht5_tts_common_voice_uk"
|
22 |
+
self.model = SpeechT5ForTextToSpeech.from_pretrained(self.model_id, torch_dtype=dtype).to(device)
|
23 |
+
self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
24 |
+
self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
25 |
+
self.speaker_embeddings = torch.tensor(np.load("embed.npy"), dtype=dtype).to(device)
|
26 |
+
|
27 |
+
@staticmethod
|
28 |
+
def remove_special_characters_s(text: Text) -> Text:
|
29 |
+
chars_to_remove_regex = '[\…\–\"\“\%\‘\”\�\»\«\„\`\'́]'
|
30 |
+
# remove special characters
|
31 |
+
text = re.sub(chars_to_remove_regex, '', text)
|
32 |
+
text = re.sub("՚", "'", text)
|
33 |
+
text = re.sub("’", "'", text)
|
34 |
+
text = re.sub(r'ы', 'и', text)
|
35 |
+
text = text.lower()
|
36 |
+
return text
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def cyrillic_to_latin(text: Text) -> Text:
|
40 |
+
replacements = [
|
41 |
+
('а', 'a'),
|
42 |
+
('б', 'b'),
|
43 |
+
('в', 'v'),
|
44 |
+
('г', 'h'),
|
45 |
+
('д', 'd'),
|
46 |
+
('е', 'e'),
|
47 |
+
('ж', 'zh'),
|
48 |
+
('з', 'z'),
|
49 |
+
('и', 'y'),
|
50 |
+
('й', 'j'),
|
51 |
+
('к', 'k'),
|
52 |
+
('л', 'l'),
|
53 |
+
('м', 'm'),
|
54 |
+
('н', 'n'),
|
55 |
+
('о', 'o'),
|
56 |
+
('п', 'p'),
|
57 |
+
('р', 'r'),
|
58 |
+
('с', 's'),
|
59 |
+
('т', 't'),
|
60 |
+
('у', 'u'),
|
61 |
+
('ф', 'f'),
|
62 |
+
('х', 'h'),
|
63 |
+
('ц', 'ts'),
|
64 |
+
('ч', 'ch'),
|
65 |
+
('ш', 'sh'),
|
66 |
+
('щ', 'sch'),
|
67 |
+
('ь', "'"),
|
68 |
+
('ю', 'ju'),
|
69 |
+
('я', 'ja'),
|
70 |
+
('є', 'je'),
|
71 |
+
('і', 'i'),
|
72 |
+
('ї', 'ji'),
|
73 |
+
('ґ', 'g')
|
74 |
+
]
|
75 |
+
|
76 |
+
for src, dst in replacements:
|
77 |
+
text = text.replace(src, dst)
|
78 |
+
return text
|
79 |
+
|
80 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
81 |
+
"""
|
82 |
+
:param data: A dictionary contains `inputs`.
|
83 |
+
:return: A dictionary with `image` field contains image in base64.
|
84 |
+
"""
|
85 |
+
text = data.pop("inputs", None)
|
86 |
+
|
87 |
+
# Check if text is not provided
|
88 |
+
if text is None:
|
89 |
+
return {"error": "Please provide a text."}
|
90 |
+
|
91 |
+
# run inference pipeline
|
92 |
+
text = self.remove_special_characters_s(text)
|
93 |
+
text = self.cyrillic_to_latin(text)
|
94 |
+
input_ids = self.processor(text=text, return_tensors="pt")['input_ids'].to(device)
|
95 |
+
spectrogram = self.model.generate_speech(input_ids, self.speaker_embeddings)
|
96 |
+
with torch.no_grad():
|
97 |
+
speech = self.vocoder(spectrogram)
|
98 |
+
if device.type != 'cuda':
|
99 |
+
out = speech.numpy()
|
100 |
+
else:
|
101 |
+
out = speech.cpu().numpy()
|
102 |
+
|
103 |
+
# return output audio in numpy format
|
104 |
+
return out
|