File size: 8,679 Bytes
4d67132 3e878e4 a1a11d3 9c4c2b1 4d67132 9c4c2b1 4d67132 9c4c2b1 3e878e4 4d67132 3e878e4 4d67132 3e878e4 4d67132 3e878e4 4d67132 3e878e4 4d67132 3e878e4 4d67132 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- PAIX.Cloud
inference: true
thumbnail: >-
https://static.wixstatic.com/media/bdee4e_8aa5cefc86024bc88f7e20e3e19d9ff3~mv2.png/v1/fill/w_192%2Ch_192%2Clg_1%2Cusm_0.66_1.00_0.01/bdee4e_8aa5cefc86024bc88f7e20e3e19d9ff3~mv2.png
license: apache-2.0
---
# Model Card
## Summary
This model, Astrid-3B, is a StableLMEpochModel model for causal language modeling, designed to generate human-like text.
It's part of our mission to make AI technology accessible to everyone, focusing on personalization, data privacy, and transparent AI governance.
Trained in English, it's a versatile tool for a variety of applications.
This model is one of the many models available on our platform, and we currently have a 1B and 7B open-source model.
This model was trained by [PAIX.Cloud](https://www.paix.cloud/).
- Wait list: [Wait List](https://www.paix.cloud/join-waitlist)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed.
```bash
pip install transformers==4.34.0
```
Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo.
- Either leave `token=True` in the `pipeline` and login to hugginface_hub by running
```python
import huggingface_hub
huggingface_hub.login(<ACCES_TOKEN>)
```
- Or directly pass your <ACCES_TOKEN> to `token` in the `pipeline`
```python
from transformers import pipeline
generate_text = pipeline(
model="PAIXAI/Astrid-3B",
torch_dtype="auto",
trust_remote_code=True,
use_fast=True,
device_map={"": "cuda:0"},
token=True,
)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```
```bash
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
```
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
```python
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"PAIXAI/Astrid-3B",
use_fast=True,
padding_side="left",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"PAIXAI/Astrid-3B",
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "PAIXAI/Astrid-3B" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
# generate configuration can be modified to your needs
tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Quantization and sharding
You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```.
## Model Architecture
```
StableLMEpochForCausalLM(
(model): StableLMEpochModel(
(embed_tokens): Embedding(50304, 2560, padding_idx=0)
(layers): ModuleList(
(0-31): 32 x DecoderLayer(
(self_attn): Attention(
(q_proj): Linear(in_features=2560, out_features=2560, bias=False)
(k_proj): Linear(in_features=2560, out_features=2560, bias=False)
(v_proj): Linear(in_features=2560, out_features=2560, bias=False)
(o_proj): Linear(in_features=2560, out_features=2560, bias=False)
(rotary_emb): RotaryEmbedding()
)
(mlp): MLP(
(gate_proj): Linear(in_features=2560, out_features=6912, bias=False)
(up_proj): Linear(in_features=2560, out_features=6912, bias=False)
(down_proj): Linear(in_features=6912, out_features=2560, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
)
(norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=2560, out_features=50304, bias=False)
)
```
## Model Configuration
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it. |