|
import gradio as gr |
|
import torch |
|
from torchvision import models, transforms |
|
|
|
|
|
TORCH_VERSION = ".".join(torch.__version__.split(".")[:2]) |
|
CUDA_VERSION = torch.__version__.split("+")[-1] |
|
''' |
|
# -- install pre-build detectron2 |
|
!pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/{CUDA_VERSION}/{TORCH_VERSION}/index.html |
|
|
|
import detectron2 |
|
from detectron2.utils.logger import setup_logger # ???? |
|
|
|
from detectron2 import model_zoo |
|
from detectron2.engine import DefaultPredictor |
|
from detectron2.config import get_cfg |
|
|
|
# ???? |
|
setup_logger() |
|
|
|
# -- load rcnn model |
|
cfg = get_cfg() |
|
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library |
|
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) |
|
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model |
|
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well |
|
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") |
|
predictor = DefaultPredictor(cfg) |
|
|
|
!wget http://images.cocodataset.org/val2017/000000439715.jpg -q -O input.jpg |
|
im = cv2.imread("./input.jpg") |
|
cv2_imshow(im) |
|
|
|
outputs = predictor(im) |
|
|
|
print(outputs["instances"].pred_classes) |
|
print(outputs["instances"].pred_boxes) |
|
''' |
|
|
|
DesignModernityModel = torch.load("DesignModernityModel.pt") |
|
|
|
|
|
|
|
|
|
DesignModernityModel.eval() |
|
|
|
LABELS = ['2000-2004', '2006-2008', '2009-2011', '2012-2015', '2016-2018'] |
|
|
|
carTransforms = transforms.Compose([transforms.Resize(224)]) |
|
|
|
def classifyCar(im): |
|
im = Image.fromarray(im.astype('uint8'), 'RGB') |
|
im = carTransforms(im).unsqueeze(0) |
|
with torch.no_grad(): |
|
scores = torch.nn.functional.softmax(model(im)[0]) |
|
return {LABELS[i]: float(scores[i]) for i in range(2)} |
|
|
|
examples = [[example_img.jpg], [example_img2.jpg]] |
|
|
|
|
|
interface = gr.Interface(classifyCar, inputs='Image', outputs='label', cache_examples=False, title='VW Up or Fiat 500', example=examples) |
|
interface.launch() |
|
|
|
|
|
|