File size: 11,633 Bytes
21a3449 5871ef8 b1e3879 3065ec8 5871ef8 21a3449 5871ef8 21a3449 5871ef8 21a3449 5871ef8 21a3449 5871ef8 21a3449 5871ef8 21a3449 5871ef8 21a3449 5871ef8 21a3449 5871ef8 21a3449 5871ef8 21a3449 5871ef8 21a3449 5871ef8 21a3449 5871ef8 b70a6c9 5871ef8 b70a6c9 5871ef8 21a3449 5871ef8 7ebde1c 5871ef8 768d5b2 b70a6c9 768d5b2 5871ef8 21a3449 5871ef8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
license: cc-by-4.0
tags:
- alignment
- value alignment
- AI safety
- safety
- LLM
- history
datasets:
- PKU-Alignment/ProgressGym-HistText
- PKU-Alignment/ProgressGym-TimelessQA
base_model:
- PKU-Alignment/ProgressGym-HistLlama3-8B-C014-pretrain
- meta-llama/Meta-Llama-3-8B
---
# ProgressGym-HistLlama3-8B-C014-instruct
## Overview
#### The ProgressGym Framework
![Framework Diagram](./readme-assets/main-diagram.png)
**ProgressGym-HistLlama3-8B-C014-instruct** is part of the **ProgressGym** framework for research and experimentation on *progress alignment* - the emulation of moral progress in AI alignment algorithms, as a measure to prevent risks of societal value lock-in.
To quote the paper [*ProgressGym: Alignment with a Millennium of Moral Progress*](https://arxiv.org/abs/2406.20087):
> Frontier AI systems, including large language models (LLMs), hold increasing influence over the epistemology of human users. Such influence can reinforce prevailing societal values, potentially contributing to the lock-in of misguided moral beliefs and, consequently, the perpetuation of problematic moral practices on a broad scale.
>
> We introduce *progress alignment* as a technical solution to mitigate this imminent risk. Progress alignment algorithms learn to emulate the mechanics of human moral progress, thereby addressing the susceptibility of existing alignment methods to contemporary moral blindspots.
#### ProgressGym-HistLlama3-8B-C014-instruct
ProgressGym-HistLlama3-8B-C014-instruct is one of the **36 historical language models** in the ProgressGym framework.
**ProgressGym-HistLlama3-8B-C014-instruct is under continual iteration.** Improving upon the current version, new versions of the model are currently being trained to reflect historical moral tendencies in ever more comprehensive ways.
**ProgressGym-HistLlama3-8B-C014-instruct is a 14th-century historical language model.** Based on [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B), It is continued-pretrained on the 14th-century text data from [ProgressGym-HistText](https://huggingface.co/datasets/PKU-Alignment/ProgressGym-HistText), using the following hyperparameters:
- learning_rate: 1.5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- lr_scheduler_warmup_steps: 20
- num_epochs: 4.0
- mixed_precision_training: Native AMP
... with the following training results:
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.5789 | 0.0152 | 1 | 2.6458 |
| 2.5672 | 0.0758 | 5 | 2.6280 |
| 2.5751 | 0.1515 | 10 | 2.5314 |
| 2.418 | 0.2273 | 15 | 2.4634 |
| 2.4701 | 0.3030 | 20 | 2.4177 |
| 2.3904 | 0.3788 | 25 | 2.3785 |
| 2.3539 | 0.4545 | 30 | 2.3378 |
| 2.3101 | 0.5303 | 35 | 2.3082 |
| 2.3254 | 0.6061 | 40 | 2.2816 |
| 2.2762 | 0.6818 | 45 | 2.2614 |
| 2.2525 | 0.7576 | 50 | 2.2458 |
| 2.2777 | 0.8333 | 55 | 2.2321 |
| 2.2054 | 0.9091 | 60 | 2.2206 |
| 2.237 | 0.9848 | 65 | 2.2113 |
| 1.986 | 1.0606 | 70 | 2.2115 |
| 1.9373 | 1.1364 | 75 | 2.2217 |
| 1.9228 | 1.2121 | 80 | 2.2132 |
| 1.9084 | 1.2879 | 85 | 2.2118 |
| 1.9684 | 1.3636 | 90 | 2.2122 |
| 1.9126 | 1.4394 | 95 | 2.2094 |
| 1.9101 | 1.5152 | 100 | 2.2066 |
| 1.8496 | 1.5909 | 105 | 2.2058 |
| 1.9154 | 1.6667 | 110 | 2.2057 |
| 1.9233 | 1.7424 | 115 | 2.2056 |
| 1.9198 | 1.8182 | 120 | 2.2052 |
| 1.9229 | 1.8939 | 125 | 2.2048 |
| 1.8913 | 1.9697 | 130 | 2.2045 |
| 1.8814 | 2.0455 | 135 | 2.2046 |
| 1.8813 | 2.1212 | 140 | 2.2051 |
| 1.8912 | 2.1970 | 145 | 2.2058 |
| 1.9184 | 2.2727 | 150 | 2.2065 |
| 1.8662 | 2.3485 | 155 | 2.2071 |
| 1.8809 | 2.4242 | 160 | 2.2074 |
| 1.8591 | 2.5 | 165 | 2.2077 |
| 1.8731 | 2.5758 | 170 | 2.2079 |
| 1.8948 | 2.6515 | 175 | 2.2082 |
| 1.8876 | 2.7273 | 180 | 2.2082 |
| 1.8408 | 2.8030 | 185 | 2.2083 |
| 1.8931 | 2.8788 | 190 | 2.2082 |
| 1.8569 | 2.9545 | 195 | 2.2080 |
| 1.8621 | 3.0303 | 200 | 2.2079 |
| 1.8863 | 3.1061 | 205 | 2.2078 |
| 1.9021 | 3.1818 | 210 | 2.2079 |
| 1.8648 | 3.2576 | 215 | 2.2080 |
| 1.8443 | 3.3333 | 220 | 2.2081 |
| 1.8978 | 3.4091 | 225 | 2.2080 |
| 1.8658 | 3.4848 | 230 | 2.2080 |
| 1.8706 | 3.5606 | 235 | 2.2079 |
| 1.8855 | 3.6364 | 240 | 2.2078 |
| 1.8535 | 3.7121 | 245 | 2.2078 |
| 1.9062 | 3.7879 | 250 | 2.2079 |
| 1.8628 | 3.8636 | 255 | 2.2078 |
| 1.8484 | 3.9394 | 260 | 2.2077 |
Note that the training data volume for the continued pretraining stage is capped at 3GB. When the corresponding century's corpus exceeds this volume, the training data is randomly sampled to fit the volume.
**ProgressGym-HistLlama3-8B-C014-instruct is an instruction-tuned language model.** It is tuned on [ProgressGym-TimelessQA](https://huggingface.co/datasets/PKU-Alignment/ProgressGym-TimelessQA), using the following hyperparameters. Note, however, that the snapshot at training step 10 is used for the final model, to minimize erosion of the value tendencies learned during continued pretraining; we qualitatively observe that this snapshot still possesses strong instruction-following capabilities.
- learning_rate: 1.5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- lr_scheduler_warmup_steps: 20
- num_epochs: 4.0
- mixed_precision_training: Native AMP
... with the following training results:
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9832 | 0.0208 | 1 | 0.9730 |
| 0.9463 | 0.1042 | 5 | 0.9421 |
| 0.8488 | 0.2083 | 10 | 0.8247 |
| 0.7833 | 0.3125 | 15 | 0.8149 |
| 0.7797 | 0.4167 | 20 | 0.8403 |
| 0.8542 | 0.5208 | 25 | 0.8670 |
| 0.8895 | 0.625 | 30 | 0.8718 |
| 0.8519 | 0.7292 | 35 | 0.8592 |
| 0.8224 | 0.8333 | 40 | 0.8491 |
| 0.8538 | 0.9375 | 45 | 0.8384 |
| 0.6569 | 1.0417 | 50 | 0.8295 |
| 0.437 | 1.1458 | 55 | 0.8457 |
| 0.4405 | 1.25 | 60 | 0.8668 |
| 0.4331 | 1.3542 | 65 | 0.8671 |
| 0.448 | 1.4583 | 70 | 0.8597 |
| 0.4673 | 1.5625 | 75 | 0.8514 |
| 0.4298 | 1.6667 | 80 | 0.8474 |
| 0.4252 | 1.7708 | 85 | 0.8458 |
| 0.4429 | 1.875 | 90 | 0.8451 |
| 0.4484 | 1.9792 | 95 | 0.8450 |
| 0.3634 | 2.0833 | 100 | 0.8455 |
| 0.3876 | 2.1875 | 105 | 0.8467 |
| 0.3717 | 2.2917 | 110 | 0.8481 |
| 0.387 | 2.3958 | 115 | 0.8494 |
| 0.3561 | 2.5 | 120 | 0.8505 |
| 0.4219 | 2.6042 | 125 | 0.8516 |
| 0.3798 | 2.7083 | 130 | 0.8527 |
| 0.3551 | 2.8125 | 135 | 0.8537 |
| 0.3827 | 2.9167 | 140 | 0.8546 |
| 0.3938 | 3.0208 | 145 | 0.8556 |
| 0.3805 | 3.125 | 150 | 0.8565 |
| 0.3813 | 3.2292 | 155 | 0.8574 |
| 0.3894 | 3.3333 | 160 | 0.8582 |
| 0.3603 | 3.4375 | 165 | 0.8589 |
| 0.3515 | 3.5417 | 170 | 0.8597 |
| 0.3433 | 3.6458 | 175 | 0.8605 |
| 0.3511 | 3.75 | 180 | 0.8614 |
| 0.3599 | 3.8542 | 185 | 0.8620 |
| 0.3994 | 3.9583 | 190 | 0.8621 |
## Links
- **[Paper Preprint]** [ProgressGym: Alignment with a Millennium of Moral Progress](https://arxiv.org/abs/2406.20087)
- **[Leaderboard & Interactive Playground]** [PKU-Alignment/ProgressGym-LeaderBoard](https://huggingface.co/spaces/PKU-Alignment/ProgressGym-LeaderBoard)
- **[Huggingface Data & Model Collection]** [PKU-Alignment/ProgressGym](https://huggingface.co/collections/PKU-Alignment/progressgym-666735fcf3e4efa276226eaa)
- **[Github Codebase]** [PKU-Alignment/ProgressGym](https://github.com/PKU-Alignment/ProgressGym)
- **[Documentation]** [ProgressGym Documentation](https://pku-alignment.github.io/ProgressGym/)
- **[PyPI Package]** *(coming soon - [stay tuned](https://forms.gle/1TWFLL4ZCLeYTD5N6)!)*
## Citation
If the datasets, models, or framework of ProgressGym help you in your project, please cite ProgressGym using the bibtex entry below.
```text
@article{progressgym,
title={ProgressGym: Alignment with a Millennium of Moral Progress},
author={Tianyi Qiu and Yang Zhang and Xuchuan Huang and Jasmine Xinze Li and Jiaming Ji and Yaodong Yang},
journal={arXiv preprint arXiv:2406.20087},
eprint={2406.20087},
eprinttype = {arXiv},
year={2024}
}
```
## Ethics Statement
- **Copyright information of historical text data sources**:
- Project Gutenberg, one among our four source of our historical text data, consists only of texts in the public domain.
- For the text that we draw from Internet Archive, we only include those that uploaded by *Library of Congress*, which are texts freely released online by the U.S. Library of Congress for research and public use.
- The text data from Early English Books Online are, according to their publisher, "freely available to the public" and "available for access, distribution, use, or reuse by anyone".
- The last remaining source of our historical text data, the Pile of Law dataset, is released under a Creative Commons license, which we adhere to in our use.
- **Reproducibility**: To ensure reproducibility, we open-source all the code involved in the production of our main results (including the entire pipeline starting from data collection and model training), as well as the supporting infrastructure (the ProgressGym framework), making replication as easy as running a few simple script files.
- **Misuse Prevention**: In order to prevent potential misuse of progress alignment algorithms, we have carefully formulated progress alignment as strictly value-neutral, without *a priori* assumptions on the direction of progress. In the event of potential misuse of our dataset, we condemn any misuse attempt to the strongest degree possible, and will work with the research community on whistleblowing for such attempts.
- **Open-Sourcing**: We confirm that our code, data, and models are to be open-sourced under a CC-BY 4.0 license. We will continue to maintain and update our open-source repositories and models. |