File size: 11,174 Bytes
5c5108b
726a33c
 
 
 
 
 
12c2bc5
726a33c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c5108b
34d1dcf
 
 
fbbc77e
34d1dcf
726a33c
34d1dcf
726a33c
12c2bc5
726a33c
 
 
 
 
 
 
 
 
 
e80ad2f
 
 
 
 
5bf3386
726a33c
 
 
e80ad2f
726a33c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c2bc5
726a33c
12c2bc5
726a33c
12c2bc5
726a33c
 
 
 
 
 
 
12c2bc5
 
 
 
 
726a33c
 
 
12c2bc5
726a33c
 
 
 
 
 
 
e80ad2f
12c2bc5
 
726a33c
 
 
 
 
 
 
 
 
 
12c2bc5
726a33c
 
 
 
 
 
 
12c2bc5
 
 
 
726a33c
 
 
 
 
 
 
 
 
 
12c2bc5
 
3f9fbac
12c2bc5
726a33c
 
 
 
 
 
 
 
 
 
 
12c2bc5
726a33c
 
12c2bc5
 
 
 
 
726a33c
 
 
 
 
 
 
 
 
 
12c2bc5
3f9fbac
726a33c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
language:
- pt
tags:
- albertina-pt*
- albertina-ptpt
- albertina-ptbr
- albertina-ptbr-nobrwac
- fill-mask
- bert
- deberta
- portuguese
- encoder
- foundation model
license: other
datasets:
- PORTULAN/glue-ptpt
- assin2
- dlb/plue
widget:
- text: >-
    A culinária brasileira é rica em sabores e [MASK], tornando-se um dos
    maiores patrimônios do país.
---
---
<img align="left" width="40" height="40" src="https://github.githubassets.com/images/icons/emoji/unicode/1f917.png">
<p style="text-align: center;">&nbsp;&nbsp;&nbsp;&nbsp;This is the model card for Albertina PT-BR No-brWaC. 
  You may be interested in some of the other models in the <a href="https://huggingface.co/PORTULAN">Albertina (encoders) and Gervásio (decoders) families</a>.
</p>

---

# Albertina PT-BR No-brWaC


**Albertina PT-*** is a foundation, large language model for the **Portuguese language**.

It is an **encoder** of the BERT family, based on the neural architecture Transformer and 
developed over the DeBERTa model, and with most competitive performance for this language. 
It has different versions that were trained for different variants of Portuguese (PT), 
namely the European variant from Portugal (**PT-PT**) and the American variant from Brazil (**PT-BR**), 
and it is distributed free of charge and under a most permissible license.

**Albertina PT-BR No-brWaC** is a version for American **Portuguese** from **Brazil** trained on 
data sets other than brWaC, and thus with a most permissive license. 

You may be interested also in [**Albertina PT-BR**](https://huggingface.co/PORTULAN/albertina-ptbr), trained on brWaC.
To the best of our knowledge, these are encoders specifically for this language and variant 
that set a new state of the art for it, and is made publicly available 
and distributed for reuse.


**Albertina PT-BR No-brWaC** is developed by a joint team from the University of Lisbon and the University of Porto, Portugal. 
For further details, check the respective [publication](https://arxiv.org/abs/2305.06721):

``` latex
@misc{albertina-pt,
      title={Advancing Neural Encoding of Portuguese
             with Transformer Albertina PT-*}, 
      author={João Rodrigues and Luís Gomes and João Silva and
              António Branco and Rodrigo Santos and
              Henrique Lopes Cardoso and Tomás Osório},
      year={2023},
      eprint={2305.06721},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

Please use the above cannonical reference when using or citing this model.

<br>


# Model Description

**This model card is for Albertina-PT-BR No-brWaC**, with 900M parameters, 24 layers and a hidden size of 1536.

Albertina-PT-BR No-brWaC is distributed under an [MIT license](https://huggingface.co/PORTULAN/albertina-ptpt/blob/main/LICENSE).

DeBERTa is distributed under an [MIT license](https://github.com/microsoft/DeBERTa/blob/master/LICENSE).


<br>

# Training Data


**Albertina PT-BR No-brWac** was trained over a 3.7 billion token curated selection of documents from the [OSCAR](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301) data set.
The OSCAR data set includes documents in more than one hundred languages, including Portuguese, and it is widely used in the literature. 
It is the result of a selection performed over the [Common Crawl](https://commoncrawl.org/) data set, crawled from the Web, that retains only pages whose metadata indicates permission to be crawled, that performs deduplication, and that removes some boilerplate, among other filters. 
Given that it does not discriminate between the Portuguese variants, we performed extra filtering by retaining only documents whose meta-data indicate the Internet country code top-level domain of Brazil. 
We used the January 2023 version of OSCAR, which is based on the November/December 2022 version of Common Crawl.

## Preprocessing

We filtered the PT-BR corpora using the [BLOOM pre-processing](https://github.com/bigscience-workshop/data-preparation) pipeline.
We skipped the default filtering of stopwords since it would disrupt the syntactic structure, and also the filtering for language identification given the corpus was pre-selected as Portuguese.


## Training

As codebase, we resorted to the [DeBERTa V2 XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge), for English.

To train [**Albertina PT-PT No-brWac**](https://huggingface.co/PORTULAN/albertina-ptbr-nobrwac), the data set was tokenized with the original DeBERTa tokenizer with a 128 token sequence truncation and dynamic padding.
The model was trained using the maximum available memory capacity resulting in a batch size of 896 samples (56 samples per GPU).
We chose a learning rate of 1e-5 with linear decay and 10k warm-up steps. 
In total, around 200k training steps were taken across 50 epochs.
The model was trained for 1 day and 13 hours on a2-megagpu-16gb Google Cloud A2 VMs with 16 GPUs, 96 vCPUs and 1.360 GB of RAM.

<br>

# Evaluation

The two model versions were evaluated on downstream tasks organized into two groups.

In one group, we have the two data sets from the [ASSIN 2 benchmark](https://huggingface.co/datasets/assin2), namely STS and RTE, that were used to evaluate the previous state-of-the-art model [BERTimbau Large](https://huggingface.co/neuralmind/bert-large-portuguese-cased).
In the other group of data sets, we have the translations into PT-BR of the English data sets used for a few of the tasks in the widely-used [GLUE benchmark](https://huggingface.co/datasets/glue), which allowed us to test both Albertina-PT-* variants on a wider variety of downstream tasks.


## ASSIN 2

[ASSIN 2](https://huggingface.co/datasets/assin2) is a **PT-BR data** set of approximately 10.000 sentence pairs, split into 6.500 for training, 500 for validation, and 2.448 for testing, annotated with semantic relatedness scores (range 1 to 5) and with binary entailment judgments.
This data set supports the task of semantic textual similarity (STS), which consists of assigning a score of how semantically related two sentences are; and the task of recognizing textual entailment (RTE), which given a pair of sentences, consists of determining whether the first entails the second.

| Model                        | RTE (Accuracy) | STS (Pearson)|
|------------------------------|----------------|--------------|
| **Albertina-PT-BR**          | **0.9130**     | **0.8676**   |
| **Albertina-PT-BR No-brWaC** | 0.8950         | 0.8547       |


## GLUE tasks translated

We resort to [PLUE](https://huggingface.co/datasets/dlb/plue) (Portuguese Language Understanding Evaluation), a data set that was obtained by automatically translating GLUE into **PT-BR**.
We address four tasks from those in PLUE, namely:
- two similarity tasks: MRPC, for detecting whether two sentences are paraphrases of each other, and STS-B, for semantic textual similarity;
- and two inference tasks: RTE, for recognizing textual entailment and WNLI, for coreference and natural language inference.
  

| Model                        | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) |
|------------------------------|----------------|----------------|-----------|-----------------|
| **Albertina-PT-BR No-brWaC** | **0.7798**     | **0.5070**     | **0.9167**| 0.8743 
| **Albertina-PT-BR**          | 0.7545         | 0.4601         | 0.9071    | **0.8910**      | 



<br>

# How to use

You can use this model directly with a pipeline for masked language modeling:

```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='PORTULAN/albertina-ptbr-nobrwac')
>>> unmasker("A culinária brasileira é rica em sabores e [MASK], tornando-se um dos maiores patrimônios do país.")

[{'score': 0.3866911828517914, 'token': 23395, 'token_str': 'aromas', 'sequence': 'A culinária brasileira é rica em sabores e aromas, tornando-se um dos maiores patrimônios do país.'},
{'score': 0.2926434874534607, 'token': 10392, 'token_str': 'costumes', 'sequence': 'A culinária brasileira é rica em sabores e costumes, tornando-se um dos maiores patrimônios do país.'},
{'score': 0.1913347691297531, 'token': 21925, 'token_str': 'cores', 'sequence': 'A culinária brasileira é rica em sabores e cores, tornando-se um dos maiores patrimônios do país.'},
{'score': 0.06453365087509155, 'token': 117371, 'token_str': 'cultura', 'sequence': 'A culinária brasileira é rica em sabores e cultura, tornando-se um dos maiores patrimônios do país.'},
{'score': 0.019388679414987564, 'token': 22647, 'token_str': 'nuances', 'sequence': 'A culinária brasileira é rica em sabores e nuances, tornando-se um dos maiores patrimônios do país.'}]


```

The model can be used by fine-tuning it for a specific task:

```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
>>> from datasets import load_dataset

>>> model = AutoModelForSequenceClassification.from_pretrained("PORTULAN/albertina-ptbr-nobrwac", num_labels=2)
>>> tokenizer = AutoTokenizer.from_pretrained("PORTULAN/albertina-ptbr-nobrwac")
>>> dataset = load_dataset("PORTULAN/glue-ptpt", "rte")

>>> def tokenize_function(examples):
...     return tokenizer(examples["sentence1"], examples["sentence2"], padding="max_length", truncation=True)

>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)

>>> training_args = TrainingArguments(output_dir="albertina-ptbr-rte", evaluation_strategy="epoch")
>>> trainer = Trainer(
...     model=model,
...     args=training_args,
...     train_dataset=tokenized_datasets["train"],
...     eval_dataset=tokenized_datasets["validation"],
... )

>>> trainer.train()

```

<br>

# Citation

When using or citing this model, kindly cite the following [publication](https://arxiv.org/abs/2305.06721):

``` latex
@misc{albertina-pt,
      title={Advancing Neural Encoding of Portuguese
             with Transformer Albertina PT-*}, 
      author={João Rodrigues and Luís Gomes and João Silva and
              António Branco and Rodrigo Santos and
              Henrique Lopes Cardoso and Tomás Osório},
      year={2023},
      eprint={2305.06721},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

<br>

# Acknowledgments

The research reported here was partially supported by: PORTULAN CLARIN—Research Infrastructure for the Science and Technology of Language,
funded by Lisboa 2020, Alentejo 2020 and FCT—Fundação para a Ciência e Tecnologia under the
grant PINFRA/22117/2016; research project ALBERTINA - Foundation Encoder Model for Portuguese and AI, funded by FCT—Fundação para a Ciência e Tecnologia under the
grant CPCA-IAC/AV/478394/2022; innovation project ACCELERAT.AI - Multilingual Intelligent Contact Centers, funded by IAPMEI, I.P. - Agência para a Competitividade e Inovação under the grant C625734525-00462629, of Plano de Recuperação e Resiliência, call RE-C05-i01.01 – Agendas/Alianças Mobilizadoras para a Reindustrialização; and LIACC - Laboratory for AI and Computer Science, funded by FCT—Fundação para a Ciência e Tecnologia under the grant FCT/UID/CEC/0027/2020.