luismsgomes
commited on
Commit
•
70c0d58
1
Parent(s):
7ba2697
fixed README
Browse files
README.md
CHANGED
@@ -10,7 +10,7 @@ tags:
|
|
10 |
|
11 |
---
|
12 |
|
13 |
-
#
|
14 |
|
15 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
16 |
|
@@ -30,7 +30,7 @@ Then you can use the model like this:
|
|
30 |
from sentence_transformers import SentenceTransformer
|
31 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
32 |
|
33 |
-
model = SentenceTransformer('
|
34 |
embeddings = model.encode(sentences)
|
35 |
print(embeddings)
|
36 |
```
|
@@ -56,8 +56,8 @@ def mean_pooling(model_output, attention_mask):
|
|
56 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
57 |
|
58 |
# Load model from HuggingFace Hub
|
59 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
60 |
-
model = AutoModel.from_pretrained('
|
61 |
|
62 |
# Tokenize sentences
|
63 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -79,7 +79,7 @@ print(sentence_embeddings)
|
|
79 |
|
80 |
<!--- Describe how your model was evaluated -->
|
81 |
|
82 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=
|
83 |
|
84 |
|
85 |
## Training
|
|
|
10 |
|
11 |
---
|
12 |
|
13 |
+
# Serafim 100m Portuguese (PT) Sentence Encoder
|
14 |
|
15 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
16 |
|
|
|
30 |
from sentence_transformers import SentenceTransformer
|
31 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
32 |
|
33 |
+
model = SentenceTransformer('PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir')
|
34 |
embeddings = model.encode(sentences)
|
35 |
print(embeddings)
|
36 |
```
|
|
|
56 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
57 |
|
58 |
# Load model from HuggingFace Hub
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained('PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir')
|
60 |
+
model = AutoModel.from_pretrained('PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir')
|
61 |
|
62 |
# Tokenize sentences
|
63 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
79 |
|
80 |
<!--- Describe how your model was evaluated -->
|
81 |
|
82 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir)
|
83 |
|
84 |
|
85 |
## Training
|