luismsgomes commited on
Commit
70c0d58
1 Parent(s): 7ba2697

fixed README

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -10,7 +10,7 @@ tags:
10
 
11
  ---
12
 
13
- # {MODEL_NAME}
14
 
15
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
16
 
@@ -30,7 +30,7 @@ Then you can use the model like this:
30
  from sentence_transformers import SentenceTransformer
31
  sentences = ["This is an example sentence", "Each sentence is converted"]
32
 
33
- model = SentenceTransformer('{MODEL_NAME}')
34
  embeddings = model.encode(sentences)
35
  print(embeddings)
36
  ```
@@ -56,8 +56,8 @@ def mean_pooling(model_output, attention_mask):
56
  sentences = ['This is an example sentence', 'Each sentence is converted']
57
 
58
  # Load model from HuggingFace Hub
59
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
60
- model = AutoModel.from_pretrained('{MODEL_NAME}')
61
 
62
  # Tokenize sentences
63
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -79,7 +79,7 @@ print(sentence_embeddings)
79
 
80
  <!--- Describe how your model was evaluated -->
81
 
82
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
83
 
84
 
85
  ## Training
 
10
 
11
  ---
12
 
13
+ # Serafim 100m Portuguese (PT) Sentence Encoder
14
 
15
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
16
 
 
30
  from sentence_transformers import SentenceTransformer
31
  sentences = ["This is an example sentence", "Each sentence is converted"]
32
 
33
+ model = SentenceTransformer('PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir')
34
  embeddings = model.encode(sentences)
35
  print(embeddings)
36
  ```
 
56
  sentences = ['This is an example sentence', 'Each sentence is converted']
57
 
58
  # Load model from HuggingFace Hub
59
+ tokenizer = AutoTokenizer.from_pretrained('PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir')
60
+ model = AutoModel.from_pretrained('PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir')
61
 
62
  # Tokenize sentences
63
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
79
 
80
  <!--- Describe how your model was evaluated -->
81
 
82
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir)
83
 
84
 
85
  ## Training