Pageee's picture
End of training
3186332 verified
metadata
language:
  - fy
base_model: distil-small.en
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_6_1
metrics:
  - wer
model-index:
  - name: DistilFT-Frisian-10h
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_6_fy_NL
          type: mozilla-foundation/common_voice_6_1
          args: 'config: fy-NL, split: train-10h'
        metrics:
          - name: Wer
            type: wer
            value: 35.804669399394044

DistilFT-Frisian-10h

This model is a fine-tuned version of distil-small.en on the mozilla-foundation/common_voice_6_fy_NL dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6854
  • Wer: 35.8047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0989 0.5348 500 1.2112 59.2408
0.5734 1.0695 1000 0.8419 46.6405
0.4798 1.6043 1500 0.7341 42.1137
0.2483 2.1390 2000 0.6788 39.4190
0.2367 2.6738 2500 0.6554 37.7865
0.1197 3.2086 3000 0.6613 36.7706
0.0969 3.7433 3500 0.6591 36.7279
0.0468 4.2781 4000 0.6777 35.8688
0.0358 4.8128 4500 0.6771 35.7583
0.028 5.3476 5000 0.6854 35.8047

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1