Pamela153 commited on
Commit
1f7952b
1 Parent(s): c771aba

First commit for unit 1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 251.70 +/- 12.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x784c8348d000>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x784c8348d090>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x784c8348d120>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x784c8348d1b0>", "_build": "<function ActorCriticPolicy._build at 0x784c8348d240>", "forward": "<function ActorCriticPolicy.forward at 0x784c8348d2d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x784c8348d360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x784c8348d3f0>", "_predict": "<function ActorCriticPolicy._predict at 0x784c8348d480>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x784c8348d510>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x784c8348d5a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x784c8348d630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x784c83481f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689473863395654233, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJolbryPaE877uDFPUqW7708MEI9VOXIvgAAAAAAAIA/rRMMvnPdRz/gEMe9Xq6uvhAG3L1g37E9AAAAAAAAAAAAl/K8T7c4vKiSWTs8cYI9Fm06PRZWirwAAIA/AACAP2bxG76hU9I9WagXPoD+Fb6H2iS8Jsd2PAAAAAAAAAAAzUK8PKTxlj/+yqg9103dvoXzND2+YI48AAAAAAAAAADA9p+9e1aGuru1eTywX1s8ctrducJ3QT0AAAAAAACAP5b5hr4858M+0EkiPjmCr760lTq91jmWOwAAAAAAAAAAZkJNPHsugbpDhqC7cp3iOMz3Abmr0Z85AACAPwAAgD+6ElW+jwtXPqpMUD4NEyy+VQx9vCpWMT0AAAAAAAAAAKBhQz5NfdY+Gg4cvrndQr6Cnno8WhcWvAAAAAAAAAAAM3q/vHuqj7or9E+2WjnusIXx1bqD/Xo1AACAPwAAgD/mkF0+4IQmP3BQ+73ZM7e+CnZUPRq1jL0AAAAAAAAAAJqZlTrDQTy6Yn5qOa7gRjWjPZW63eaHuAAAgD8AAIA/s1EcvjS30z0VPmI+v4yXvtdGvzyuaic9AAAAAAAAAAAmasS9FJqaugj0HLjzBRyzKzPxOnw/NTcAAIA/AACAP00tq70b83A/cxJuvc5VyL4bIaa9rJa3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBWFxffGdaMAWyUTS8BjAF0lEdAlSJN1yNn5HV9lChoBkdAcSVOY6XBxmgHTX4BaAhHQJUi/06HTJB1fZQoaAZHQG3ixhc7hehoB01jAWgIR0CVJC3K0UoKdX2UKGgGR0Bvk+zv7WNFaAdNKwFoCEdAlSSyNjslcHV9lChoBkdARNuDpTuOTGgHS+9oCEdAlSUXSjQAuXV9lChoBkdAcBoVPva11GgHTQ0BaAhHQJUma1qnFYN1fZQoaAZHQHBIHUx20RhoB00RAWgIR0CVJo6mO2iMdX2UKGgGR0BxCsJzDGcXaAdNFAFoCEdAlSe2criEQHV9lChoBkdAchn3trsSkGgHS+hoCEdAlSjSFK02L3V9lChoBkdAcp5SydFvymgHS+5oCEdAlSly9Zid8XV9lChoBkdAcY2dcSoOx2gHTSsBaAhHQJUpz5Ec81Z1fZQoaAZHQHA2tytFKChoB00dAWgIR0CVKxk3juKGdX2UKGgGR0Bx5nMdLg4waAdNqwFoCEdAlSv7rTpgTnV9lChoBkdAcI1fQ8fV7WgHTQcBaAhHQJUr+R6nivR1fZQoaAZHQG9SHZsbedloB0v7aAhHQJUt6ce8wpR1fZQoaAZHQG9bNKZlWfdoB01VAWgIR0CVLnmMOwxGdX2UKGgGR0BvPmViWmgraAdNswFoCEdAlS8ZuMuOCHV9lChoBkdAcXK4M4LkS2gHTeoBaAhHQJUvME6kqMF1fZQoaAZHQHIkOLFXJYFoB00lAWgIR0CVME97ngYQdX2UKGgGR0BsuSojv/ipaAdL/mgIR0CVMkuhK15TdX2UKGgGR0BylvJjlPrOaAdNnQFoCEdAlTSorOJLunV9lChoBkdAcNz7J4jbBWgHTWwBaAhHQJU2VnVXmvJ1fZQoaAZHQHAAiK3uuzRoB00MAWgIR0CVOGBi1AqvdX2UKGgGR0Bt+r0OEug6aAdNPQFoCEdAlTj/0Zm7KHV9lChoBkdAcY94Hoouw2gHTUoBaAhHQJU6nNNahYh1fZQoaAZHQHA+vxpcophoB00jAWgIR0CVOvsS00FbdX2UKGgGR0ByIjLyMDOkaAdNcwFoCEdAlTs2dRR/E3V9lChoBkdAb1cEK3NLUWgHTSsBaAhHQJU7bjdYW+J1fZQoaAZHQHA+QiRnvlVoB03HAWgIR0CVO6Uo8ZDRdX2UKGgGR0A/dgH/tICmaAdL2WgIR0CVPDDYh+vydX2UKGgGR0BxAYYJmdy1aAdL/WgIR0CVPImSyMUAdX2UKGgGR0Bvk/47A+INaAdNFgFoCEdAlT1cPFvQ4XV9lChoBkdAcE1Ap8WsR2gHTXUBaAhHQJU/hmnO0LN1fZQoaAZHQHJgBUvPC2toB02tAWgIR0CVQd+L3sX0dX2UKGgGR0Bwhle3QUpNaAdNWAFoCEdAlUIBL9MsYnV9lChoBkdAXyBu89Oh02gHTegDaAhHQJVCPfEXLvF1fZQoaAZHQHEMCNKh+ORoB0vyaAhHQJVCkaNuLrJ1fZQoaAZHQHBXwwj+rENoB00lAWgIR0CVQs6CUX54dX2UKGgGR0BvhKz3RG+caAdNFQFoCEdAlUTrSVnmJXV9lChoBkdAcdVub7TDwmgHTRsBaAhHQJVE6OS4e911fZQoaAZHQGxQxhDw6QxoB00SAWgIR0CVRTsN2C/XdX2UKGgGR0ByPXhR64UfaAdNSgFoCEdAlUVP4VRDTnV9lChoBkdAcJQYSg5BC2gHTQ4BaAhHQJVFfUhFEzB1fZQoaAZHQHFq1mOEM9doB01GAWgIR0CVRoMSsbNsdX2UKGgGR0BtGbZL7GedaAdNHQFoCEdAlUbQMMI/q3V9lChoBkdAcj0oQFs54mgHTTsBaAhHQJVHBUKiPAB1fZQoaAZHQHGLLUgB91FoB01WAWgIR0CVRxTtb9qDdX2UKGgGR0BviFlqagEmaAdNLwFoCEdAlVlqZDzAe3V9lChoBkdAbnrNrTH80mgHTR0BaAhHQJVbQaOxSpB1fZQoaAZHQHDf8aOxSpBoB00bAWgIR0CVW26asp5NdX2UKGgGR0Btn2/rSmZWaAdNKAFoCEdAlVx3cHnln3V9lChoBkdAcX8MF2V3U2gHTUMBaAhHQJVciARTS9d1fZQoaAZHQFC6NsWO6upoB0vyaAhHQJVc+PvKEFp1fZQoaAZHQHFo+SbH6uZoB00HAWgIR0CVXWpEQXhwdX2UKGgGR0BwsDm/336AaAdNGQFoCEdAlV62rCFbmnV9lChoBkdAcCMQXAM2FWgHTRQBaAhHQJVf6+0w8GN1fZQoaAZHQHGBvrB0p3JoB00+AWgIR0CVX/Prv9cbdX2UKGgGR0BwJYVpKzzFaAdNDQFoCEdAlWBL+T/yXnV9lChoBkdAckbX8wYcemgHTZYBaAhHQJVgWMtK7I11fZQoaAZHQHG0VcUuctpoB00kAWgIR0CVYSNtZV4pdX2UKGgGR0Bw97zkIX0oaAdNSAFoCEdAlWIKeoUBXHV9lChoBkdAcogzRx95QmgHTQ0BaAhHQJVi+DGtITZ1fZQoaAZHQHF1sDbJwKloB02nAWgIR0CVYwyVv/BFdX2UKGgGR0ByTv5KvmozaAdL+2gIR0CVZBzwMH8kdX2UKGgGR0BytDS8an76aAdNDgFoCEdAlWYDpLVWj3V9lChoBkdAcJH2dNFjNWgHTRIBaAhHQJVm2jYZl4F1fZQoaAZHQHBMdKVY6n1oB00wAWgIR0CVaQakRBeHdX2UKGgGR0BtrV12aDwpaAdNSgFoCEdAlWkJQ53kgnV9lChoBkdAcPvgZjx0+2gHTXYBaAhHQJVpluR9w3p1fZQoaAZHQHD/fdhy8z1oB003AWgIR0CVay+7UXpGdX2UKGgGR0Bvq0uanaWYaAdNGwFoCEdAlWtWGIsRQXV9lChoBkdAWpbLyMDOkmgHTegDaAhHQJVrtQTEit91fZQoaAZHQGzlPcafjCJoB00ZAWgIR0CVa7do371qdX2UKGgGR0BtCjROUMXraAdNKwFoCEdAlWx7CemNznV9lChoBkdAciI4kNWluWgHTTkBaAhHQJVsnms/6ft1fZQoaAZHQHBAA04zabpoB00gAWgIR0CVbP0nw5NodX2UKGgGR0BsfFd/rjYJaAdNGwFoCEdAlW3O6RQrMHV9lChoBkdAcW60knkT6GgHS/9oCEdAlW31I3BHkXV9lChoBkdAbDbo/RmbsmgHTRwBaAhHQJVu9nTRYzV1fZQoaAZHQHDeFg6U7jloB00oAWgIR0CVcOr30wrUdX2UKGgGR0Bwrtc1O0swaAdNGwFoCEdAlXKo6Kcd53V9lChoBkdAcbtcnE2pAGgHTRMBaAhHQJVzDmhdt2t1fZQoaAZHQHFct7WuoxZoB00YAWgIR0CVdW4BmwqzdX2UKGgGR0BwcxdnkDISaAdNNgFoCEdAlXcizkZJkHV9lChoBkdAcK32jO9nLGgHTQ8BaAhHQJV3UZYPoV51fZQoaAZHQEmsg0TDfm9oB0v5aAhHQJV35Vea8Yh1fZQoaAZHQHFyyuloDgZoB00aAWgIR0CVd/vjfek6dX2UKGgGR0BwmejtXxOMaAdNCQFoCEdAlXhXtv4ub3V9lChoBkdAcXRMm4RVZWgHTR8BaAhHQJV4bB2wFC91fZQoaAZHQG/JLKFIuoRoB01MAWgIR0CVeIIVdonKdX2UKGgGR0BwnzOzIFNdaAdL6GgIR0CVeH4x1xKhdX2UKGgGR0Bv0GYWtU4raAdNHQFoCEdAlXkpiZv1lHV9lChoBkdAbyEm2LHdXWgHTRABaAhHQJV6L0+TvAp1fZQoaAZHQHDqRffGdZtoB00wAWgIR0CVekCIUJv6dX2UKGgGR0Bwi5fKISDiaAdNfAFoCEdAlXrJzo2XLXV9lChoBkdAUX42P1ct5GgHS8hoCEdAlXwD1TR6W3V9lChoBkdAcH9U3n6l+GgHTQEBaAhHQJV8UXdj5Kx1fZQoaAZHQHG6F+7UXpJoB01UAWgIR0CVfW7VrhzedX2UKGgGR0Bwf72PDHfeaAdNNwFoCEdAlX2rq+rU9nV9lChoBkdAcAtx/ustCmgHTQUBaAhHQJV+5xAB1cN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
mlp_model_v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:806d973b1e31973aee6435644598a739ed0993273e7309129ea468546ad61e69
3
+ size 146738
mlp_model_v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
mlp_model_v0/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x784c8348d000>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x784c8348d090>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x784c8348d120>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x784c8348d1b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x784c8348d240>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x784c8348d2d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x784c8348d360>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x784c8348d3f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x784c8348d480>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x784c8348d510>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x784c8348d5a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x784c8348d630>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x784c83481f40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1689473863395654233,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJolbryPaE877uDFPUqW7708MEI9VOXIvgAAAAAAAIA/rRMMvnPdRz/gEMe9Xq6uvhAG3L1g37E9AAAAAAAAAAAAl/K8T7c4vKiSWTs8cYI9Fm06PRZWirwAAIA/AACAP2bxG76hU9I9WagXPoD+Fb6H2iS8Jsd2PAAAAAAAAAAAzUK8PKTxlj/+yqg9103dvoXzND2+YI48AAAAAAAAAADA9p+9e1aGuru1eTywX1s8ctrducJ3QT0AAAAAAACAP5b5hr4858M+0EkiPjmCr760lTq91jmWOwAAAAAAAAAAZkJNPHsugbpDhqC7cp3iOMz3Abmr0Z85AACAPwAAgD+6ElW+jwtXPqpMUD4NEyy+VQx9vCpWMT0AAAAAAAAAAKBhQz5NfdY+Gg4cvrndQr6Cnno8WhcWvAAAAAAAAAAAM3q/vHuqj7or9E+2WjnusIXx1bqD/Xo1AACAPwAAgD/mkF0+4IQmP3BQ+73ZM7e+CnZUPRq1jL0AAAAAAAAAAJqZlTrDQTy6Yn5qOa7gRjWjPZW63eaHuAAAgD8AAIA/s1EcvjS30z0VPmI+v4yXvtdGvzyuaic9AAAAAAAAAAAmasS9FJqaugj0HLjzBRyzKzPxOnw/NTcAAIA/AACAP00tq70b83A/cxJuvc5VyL4bIaa9rJa3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBWFxffGdaMAWyUTS8BjAF0lEdAlSJN1yNn5HV9lChoBkdAcSVOY6XBxmgHTX4BaAhHQJUi/06HTJB1fZQoaAZHQG3ixhc7hehoB01jAWgIR0CVJC3K0UoKdX2UKGgGR0Bvk+zv7WNFaAdNKwFoCEdAlSSyNjslcHV9lChoBkdARNuDpTuOTGgHS+9oCEdAlSUXSjQAuXV9lChoBkdAcBoVPva11GgHTQ0BaAhHQJUma1qnFYN1fZQoaAZHQHBIHUx20RhoB00RAWgIR0CVJo6mO2iMdX2UKGgGR0BxCsJzDGcXaAdNFAFoCEdAlSe2criEQHV9lChoBkdAchn3trsSkGgHS+hoCEdAlSjSFK02L3V9lChoBkdAcp5SydFvymgHS+5oCEdAlSly9Zid8XV9lChoBkdAcY2dcSoOx2gHTSsBaAhHQJUpz5Ec81Z1fZQoaAZHQHA2tytFKChoB00dAWgIR0CVKxk3juKGdX2UKGgGR0Bx5nMdLg4waAdNqwFoCEdAlSv7rTpgTnV9lChoBkdAcI1fQ8fV7WgHTQcBaAhHQJUr+R6nivR1fZQoaAZHQG9SHZsbedloB0v7aAhHQJUt6ce8wpR1fZQoaAZHQG9bNKZlWfdoB01VAWgIR0CVLnmMOwxGdX2UKGgGR0BvPmViWmgraAdNswFoCEdAlS8ZuMuOCHV9lChoBkdAcXK4M4LkS2gHTeoBaAhHQJUvME6kqMF1fZQoaAZHQHIkOLFXJYFoB00lAWgIR0CVME97ngYQdX2UKGgGR0BsuSojv/ipaAdL/mgIR0CVMkuhK15TdX2UKGgGR0BylvJjlPrOaAdNnQFoCEdAlTSorOJLunV9lChoBkdAcNz7J4jbBWgHTWwBaAhHQJU2VnVXmvJ1fZQoaAZHQHAAiK3uuzRoB00MAWgIR0CVOGBi1AqvdX2UKGgGR0Bt+r0OEug6aAdNPQFoCEdAlTj/0Zm7KHV9lChoBkdAcY94Hoouw2gHTUoBaAhHQJU6nNNahYh1fZQoaAZHQHA+vxpcophoB00jAWgIR0CVOvsS00FbdX2UKGgGR0ByIjLyMDOkaAdNcwFoCEdAlTs2dRR/E3V9lChoBkdAb1cEK3NLUWgHTSsBaAhHQJU7bjdYW+J1fZQoaAZHQHA+QiRnvlVoB03HAWgIR0CVO6Uo8ZDRdX2UKGgGR0A/dgH/tICmaAdL2WgIR0CVPDDYh+vydX2UKGgGR0BxAYYJmdy1aAdL/WgIR0CVPImSyMUAdX2UKGgGR0Bvk/47A+INaAdNFgFoCEdAlT1cPFvQ4XV9lChoBkdAcE1Ap8WsR2gHTXUBaAhHQJU/hmnO0LN1fZQoaAZHQHJgBUvPC2toB02tAWgIR0CVQd+L3sX0dX2UKGgGR0Bwhle3QUpNaAdNWAFoCEdAlUIBL9MsYnV9lChoBkdAXyBu89Oh02gHTegDaAhHQJVCPfEXLvF1fZQoaAZHQHEMCNKh+ORoB0vyaAhHQJVCkaNuLrJ1fZQoaAZHQHBXwwj+rENoB00lAWgIR0CVQs6CUX54dX2UKGgGR0BvhKz3RG+caAdNFQFoCEdAlUTrSVnmJXV9lChoBkdAcdVub7TDwmgHTRsBaAhHQJVE6OS4e911fZQoaAZHQGxQxhDw6QxoB00SAWgIR0CVRTsN2C/XdX2UKGgGR0ByPXhR64UfaAdNSgFoCEdAlUVP4VRDTnV9lChoBkdAcJQYSg5BC2gHTQ4BaAhHQJVFfUhFEzB1fZQoaAZHQHFq1mOEM9doB01GAWgIR0CVRoMSsbNsdX2UKGgGR0BtGbZL7GedaAdNHQFoCEdAlUbQMMI/q3V9lChoBkdAcj0oQFs54mgHTTsBaAhHQJVHBUKiPAB1fZQoaAZHQHGLLUgB91FoB01WAWgIR0CVRxTtb9qDdX2UKGgGR0BviFlqagEmaAdNLwFoCEdAlVlqZDzAe3V9lChoBkdAbnrNrTH80mgHTR0BaAhHQJVbQaOxSpB1fZQoaAZHQHDf8aOxSpBoB00bAWgIR0CVW26asp5NdX2UKGgGR0Btn2/rSmZWaAdNKAFoCEdAlVx3cHnln3V9lChoBkdAcX8MF2V3U2gHTUMBaAhHQJVciARTS9d1fZQoaAZHQFC6NsWO6upoB0vyaAhHQJVc+PvKEFp1fZQoaAZHQHFo+SbH6uZoB00HAWgIR0CVXWpEQXhwdX2UKGgGR0BwsDm/336AaAdNGQFoCEdAlV62rCFbmnV9lChoBkdAcCMQXAM2FWgHTRQBaAhHQJVf6+0w8GN1fZQoaAZHQHGBvrB0p3JoB00+AWgIR0CVX/Prv9cbdX2UKGgGR0BwJYVpKzzFaAdNDQFoCEdAlWBL+T/yXnV9lChoBkdAckbX8wYcemgHTZYBaAhHQJVgWMtK7I11fZQoaAZHQHG0VcUuctpoB00kAWgIR0CVYSNtZV4pdX2UKGgGR0Bw97zkIX0oaAdNSAFoCEdAlWIKeoUBXHV9lChoBkdAcogzRx95QmgHTQ0BaAhHQJVi+DGtITZ1fZQoaAZHQHF1sDbJwKloB02nAWgIR0CVYwyVv/BFdX2UKGgGR0ByTv5KvmozaAdL+2gIR0CVZBzwMH8kdX2UKGgGR0BytDS8an76aAdNDgFoCEdAlWYDpLVWj3V9lChoBkdAcJH2dNFjNWgHTRIBaAhHQJVm2jYZl4F1fZQoaAZHQHBMdKVY6n1oB00wAWgIR0CVaQakRBeHdX2UKGgGR0BtrV12aDwpaAdNSgFoCEdAlWkJQ53kgnV9lChoBkdAcPvgZjx0+2gHTXYBaAhHQJVpluR9w3p1fZQoaAZHQHD/fdhy8z1oB003AWgIR0CVay+7UXpGdX2UKGgGR0Bvq0uanaWYaAdNGwFoCEdAlWtWGIsRQXV9lChoBkdAWpbLyMDOkmgHTegDaAhHQJVrtQTEit91fZQoaAZHQGzlPcafjCJoB00ZAWgIR0CVa7do371qdX2UKGgGR0BtCjROUMXraAdNKwFoCEdAlWx7CemNznV9lChoBkdAciI4kNWluWgHTTkBaAhHQJVsnms/6ft1fZQoaAZHQHBAA04zabpoB00gAWgIR0CVbP0nw5NodX2UKGgGR0BsfFd/rjYJaAdNGwFoCEdAlW3O6RQrMHV9lChoBkdAcW60knkT6GgHS/9oCEdAlW31I3BHkXV9lChoBkdAbDbo/RmbsmgHTRwBaAhHQJVu9nTRYzV1fZQoaAZHQHDeFg6U7jloB00oAWgIR0CVcOr30wrUdX2UKGgGR0Bwrtc1O0swaAdNGwFoCEdAlXKo6Kcd53V9lChoBkdAcbtcnE2pAGgHTRMBaAhHQJVzDmhdt2t1fZQoaAZHQHFct7WuoxZoB00YAWgIR0CVdW4BmwqzdX2UKGgGR0BwcxdnkDISaAdNNgFoCEdAlXcizkZJkHV9lChoBkdAcK32jO9nLGgHTQ8BaAhHQJV3UZYPoV51fZQoaAZHQEmsg0TDfm9oB0v5aAhHQJV35Vea8Yh1fZQoaAZHQHFyyuloDgZoB00aAWgIR0CVd/vjfek6dX2UKGgGR0BwmejtXxOMaAdNCQFoCEdAlXhXtv4ub3V9lChoBkdAcXRMm4RVZWgHTR8BaAhHQJV4bB2wFC91fZQoaAZHQG/JLKFIuoRoB01MAWgIR0CVeIIVdonKdX2UKGgGR0BwnzOzIFNdaAdL6GgIR0CVeH4x1xKhdX2UKGgGR0Bv0GYWtU4raAdNHQFoCEdAlXkpiZv1lHV9lChoBkdAbyEm2LHdXWgHTRABaAhHQJV6L0+TvAp1fZQoaAZHQHDqRffGdZtoB00wAWgIR0CVekCIUJv6dX2UKGgGR0Bwi5fKISDiaAdNfAFoCEdAlXrJzo2XLXV9lChoBkdAUX42P1ct5GgHS8hoCEdAlXwD1TR6W3V9lChoBkdAcH9U3n6l+GgHTQEBaAhHQJV8UXdj5Kx1fZQoaAZHQHG6F+7UXpJoB01UAWgIR0CVfW7VrhzedX2UKGgGR0Bwf72PDHfeaAdNNwFoCEdAlX2rq+rU9nV9lChoBkdAcAtx/ustCmgHTQUBaAhHQJV+5xAB1cN1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
mlp_model_v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d90d375e42a36065316ae371fc1e821ad0acf1125cbb8b51fde6516c3feef7c
3
+ size 87929
mlp_model_v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75302df04770dec591ec1699e173599ea858b2dab9d31089c1dabc74d94eec63
3
+ size 43329
mlp_model_v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
mlp_model_v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (177 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 251.704321, "std_reward": 12.718380489394013, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-16T02:46:48.163766"}