import argparse import json import os import shutil import re from collections import defaultdict from inspect import signature from tempfile import TemporaryDirectory from typing import Dict, List, Optional, Set, Tuple import torch from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download from huggingface_hub.file_download import repo_folder_name from safetensors.torch import load_file, save_file from transformers import AutoConfig COMMIT_DESCRIPTION = """ This is an automated PR created with https://huggingface.co/spaces/safetensors/convert This new file is equivalent to `pytorch_model.bin` but safe in the sense that no arbitrary code can be put into it. These files also happen to load much faster than their pytorch counterpart: https://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb The widgets on your model page will run using this model even if this is not merged making sure the file actually works. If you find any issues: please report here: https://huggingface.co/spaces/safetensors/convert/discussions Feel free to ignore this PR. """ ConversionResult = Tuple[List["CommitOperationAdd"], List[Tuple[str, "Exception"]]] class AlreadyExists(Exception): pass def shared_pointers(tensors): ptrs = defaultdict(list) for k, v in tensors.items(): ptrs[v.data_ptr()].append(k) failing = [] for ptr, names in ptrs.items(): if len(names) > 1: failing.append(names) return failing def check_file_size(sf_filename: str, pt_filename: str): sf_size = os.stat(sf_filename).st_size pt_size = os.stat(pt_filename).st_size if (sf_size - pt_size) / pt_size > 0.01: raise RuntimeError( f"""The file size different is more than 1%: - {sf_filename}: {sf_size} - {pt_filename}: {pt_size} """ ) def rename(pt_filename: str) -> str: filename, ext = os.path.splitext(pt_filename) local = f"{filename}.safetensors" local = local.replace("pytorch_model", "model") return local def convert_multi(model_id: str, folder: str, token: Optional[str]) -> ConversionResult: filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json", token=token, cache_dir=folder) with open(filename, "r") as f: data = json.load(f) filenames = set(data["weight_map"].values()) local_filenames = [] for filename in filenames: pt_filename = hf_hub_download(repo_id=model_id, filename=filename, token=token, cache_dir=folder) sf_filename = rename(pt_filename) sf_filename = os.path.join(folder, sf_filename) convert_file(pt_filename, sf_filename) local_filenames.append(sf_filename) index = os.path.join(folder, "model.safetensors.index.json") with open(index, "w") as f: newdata = {k: v for k, v in data.items()} newmap = {k: rename(v) for k, v in data["weight_map"].items()} newdata["weight_map"] = newmap json.dump(newdata, f, indent=4) local_filenames.append(index) operations = [ CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames ] errors: List[Tuple[str, "Exception"]] = [] return operations, errors def convert_single(model_id: str, folder: str, token: Optional[str]) -> ConversionResult: pt_filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin", token=token, cache_dir=folder) sf_name = "model.safetensors" sf_filename = os.path.join(folder, sf_name) convert_file(pt_filename, sf_filename) operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)] errors: List[Tuple[str, "Exception"]] = [] return operations, errors def convert_file( pt_filename: str, sf_filename: str, ): loaded = torch.load(pt_filename, map_location="cpu") if "state_dict" in loaded: loaded = loaded["state_dict"] shared = shared_pointers(loaded) for shared_weights in shared: for name in shared_weights[1:]: loaded.pop(name) # For tensors to be contiguous loaded = {k: v.contiguous() for k, v in loaded.items()} dirname = os.path.dirname(sf_filename) #os.makedirs(dirname, exist_ok=True) save_file(loaded, sf_filename, metadata={"format": "pt"}) check_file_size(sf_filename, pt_filename) reloaded = load_file(sf_filename) for k in loaded: pt_tensor = loaded[k] sf_tensor = reloaded[k] if not torch.equal(pt_tensor, sf_tensor): raise RuntimeError(f"The output tensors do not match for key {k}") def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str: errors = [] for key in ["missing_keys", "mismatched_keys", "unexpected_keys"]: pt_set = set(pt_infos[key]) sf_set = set(sf_infos[key]) pt_only = pt_set - sf_set sf_only = sf_set - pt_set if pt_only: errors.append(f"{key} : PT warnings contain {pt_only} which are not present in SF warnings") if sf_only: errors.append(f"{key} : SF warnings contain {sf_only} which are not present in PT warnings") return "\n".join(errors) def check_final_model(model_id: str, folder: str, token: Optional[str]): config = hf_hub_download(repo_id=model_id, filename="config.json", token=token, cache_dir=folder) shutil.copy(config, os.path.join(folder, "config.json")) config = AutoConfig.from_pretrained(folder) import transformers class_ = getattr(transformers, config.architectures[0]) (pt_model, pt_infos) = class_.from_pretrained(folder, output_loading_info=True) (sf_model, sf_infos) = class_.from_pretrained(folder, output_loading_info=True) if pt_infos != sf_infos: error_string = create_diff(pt_infos, sf_infos) raise ValueError(f"Different infos when reloading the model: {error_string}") pt_params = pt_model.state_dict() sf_params = sf_model.state_dict() pt_shared = shared_pointers(pt_params) sf_shared = shared_pointers(sf_params) if pt_shared != sf_shared: raise RuntimeError("The reconstructed model is wrong, shared tensors are different {shared_pt} != {shared_tf}") sig = signature(pt_model.forward) input_ids = torch.arange(10).unsqueeze(0) pixel_values = torch.randn(1, 3, 224, 224) input_values = torch.arange(1000).float().unsqueeze(0) # Hardcoded for whisper basically input_features = torch.zeros((1, 80, 3000)) kwargs = {} if "input_ids" in sig.parameters: kwargs["input_ids"] = input_ids if "input_features" in sig.parameters: kwargs["input_features"] = input_features if "decoder_input_ids" in sig.parameters: kwargs["decoder_input_ids"] = input_ids if "pixel_values" in sig.parameters: kwargs["pixel_values"] = pixel_values if "input_values" in sig.parameters: kwargs["input_values"] = input_values if "bbox" in sig.parameters: kwargs["bbox"] = torch.zeros((1, 10, 4)).long() if "image" in sig.parameters: kwargs["image"] = pixel_values if torch.cuda.is_available(): pt_model = pt_model.cuda() sf_model = sf_model.cuda() kwargs = {k: v.cuda() for k, v in kwargs.items()} try: pt_logits = pt_model(**kwargs)[0] except Exception as e: try: # Musicgen special exception. decoder_input_ids = torch.ones((input_ids.shape[0] * pt_model.decoder.num_codebooks, 1), dtype=torch.long) if torch.cuda.is_available(): decoder_input_ids = decoder_input_ids.cuda() kwargs["decoder_input_ids"] = decoder_input_ids pt_logits = pt_model(**kwargs)[0] except Exception: raise e sf_logits = sf_model(**kwargs)[0] torch.testing.assert_close(sf_logits, pt_logits) print(f"Model {model_id} is ok !") def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]: try: main_commit = api.list_repo_commits(model_id)[0].commit_id discussions = api.get_repo_discussions(repo_id=model_id) except Exception: return None for discussion in discussions: if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title: commits = api.list_repo_commits(model_id, revision=discussion.git_reference) if main_commit == commits[1].commit_id: return discussion return None def convert_generic(model_id: str, folder: str, filenames: Set[str], token: Optional[str]) -> ConversionResult: operations = [] errors = [] extensions = set([".bin", ".ckpt"]) for filename in filenames: prefix, ext = os.path.splitext(filename) if ext in extensions: pt_filename = hf_hub_download(model_id, filename=filename, token=token, cache_dir=folder) dirname, raw_filename = os.path.split(filename) if raw_filename == "pytorch_model.bin": # XXX: This is a special case to handle `transformers` and the # `transformers` part of the model which is actually loaded by `transformers`. sf_in_repo = os.path.join(dirname, "model.safetensors") else: sf_in_repo = f"{prefix}.safetensors" sf_filename = os.path.join(folder, sf_in_repo) try: convert_file(pt_filename, sf_filename) operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename)) except Exception as e: errors.append((pt_filename, e)) return operations, errors def convert(api: "HfApi", model_id: str, force: bool = False) -> Tuple["CommitInfo", List[Tuple[str, "Exception"]]]: pr_title = "Adding `safetensors` variant of this model" info = api.model_info(model_id) filenames = set(s.rfilename for s in info.siblings) with TemporaryDirectory() as d: folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) os.makedirs(folder) new_pr = None try: operations = None pr = previous_pr(api, model_id, pr_title) library_name = getattr(info, "library_name", None) if any(filename.endswith(".safetensors") for filename in filenames) and not force: raise AlreadyExists(f"Model {model_id} is already converted, skipping..") elif pr is not None and not force: url = f"https://huggingface.co/{model_id}/discussions/{pr.num}" new_pr = pr raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}") elif library_name == "transformers": if "pytorch_model.bin" in filenames: operations, errors = convert_single(model_id, folder, token=api.token) elif "pytorch_model.bin.index.json" in filenames: operations, errors = convert_multi(model_id, folder, token=api.token) else: raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert") # check_final_model(model_id, folder, token=api.token) else: operations, errors = convert_generic(model_id, folder, filenames, token=api.token) if operations: new_pr = api.create_commit( repo_id=model_id, operations=operations, commit_message=pr_title, commit_description=COMMIT_DESCRIPTION, create_pr=True, ) print(f"Pr created at {new_pr.pr_url}") else: print("No files to convert") finally: shutil.rmtree(folder) return new_pr, errors def main(input_directory, output_directory): # Get a list of all files in the input directory files = os.listdir(input_directory) # Filter the list to get only the relevant files model_files = [file for file in files if re.match(r'pytorch_model-\d{5}-of-\d{5}\.bin', file)] # Determine the range for the loop based on the number of model files num_models = len(model_files) if num_models == 0: print("No model files found in the input directory.") return # Extract yyyyy from the first model filename match = re.search(r'pytorch_model-\d{5}-of-(\d{5})\.bin', model_files[0]) if match: yyyyy = int(match.group(1)) else: print("Unable to determine the number of shards from the filename.") return if num_models != yyyyy: print("Error: Number of shards mismatch.") return # Copy *.json files (except pytorch_model.bin.index.json) from input to output directory for file in files: if file.endswith('.json') and not file == 'pytorch_model.bin.index.json': src = os.path.join(input_directory, file) dest = os.path.join(output_directory, file) shutil.copy2(src, dest) print(f"Copied {src} to {dest}") # Copy *.model files from input to output directory for file in files: if file.endswith('.model'): src = os.path.join(input_directory, file) dest = os.path.join(output_directory, file) shutil.copy2(src, dest) print(f"Copied {src} to {dest}") # Convert and rename model files for i in range(1, num_models + 1): input_filename = os.path.join(input_directory, f"pytorch_model-{i:05d}-of-{yyyyy:05d}.bin") output_filename = os.path.join(output_directory, f"model-{i:05d}-of-{yyyyy:05d}.safetensors") convert_file(input_filename, output_filename) print(f"Converted {input_filename} to {output_filename}") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Convert pytorch_model model to safetensor and copy JSON and .model files.") parser.add_argument("input_directory", help="Path to the input directory containing pytorch_model files") parser.add_argument("output_directory", help="Path to the output directory for converted safetensor files") args = parser.parse_args() main(args.input_directory, args.output_directory)