--- license: etalab-2.0 pipeline_tag: object-detection base_model: Ultralytics/YOLO11 --- This model has be trained for the Panoramax project in order to detect: - people face to blur them - licence plates to blur them - road signs to classify them with other models The last model has been trained on yolo11l with imgsz of 2048 and 300 epochs, the older one on yolo8s. ![](val_batch0_labels.jpg) Here is the last run validation : ``` Validating runs/detect/train5/weights/best.pt... Ultralytics 8.3.29 🚀 Python-3.12.3 torch-2.5.1+cu124 CUDA:0 (NVIDIA GeForce RTX 4090, 24207MiB) YOLO11l summary (fused): 464 layers, 25,281,625 parameters, 0 gradients, 86.6 GFLOPs Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 83/83 [00:08<00:00, 9.78it/s] all 329 1209 0.812 0.768 0.815 0.412 sign 231 507 0.879 0.836 0.898 0.561 plate 202 410 0.833 0.849 0.889 0.438 face 118 292 0.724 0.619 0.657 0.237 Speed: 1.2ms preprocess, 18.4ms inference, 0.0ms loss, 1.6ms postprocess per image ``` ![](results.png)