Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,6 @@ language:
|
|
5 |
library_name: transformers
|
6 |
tags:
|
7 |
- linformer
|
8 |
-
- legal
|
9 |
- medical
|
10 |
- RoBERTa
|
11 |
- pytorch
|
@@ -29,7 +28,7 @@ Jargon is available in several versions with different context sizes and types o
|
|
29 |
| jargon-general-legal | jargon-general-base |
|
30 |
| [jargon-multidomain-base](https://huggingface.co/PantagrueLLM/jargon-multidomain-base) | jargon-general-base |
|
31 |
| jargon-legal | scratch |
|
32 |
-
| jargon-legal-4096
|
33 |
| [jargon-biomed](https://huggingface.co/PantagrueLLM/jargon-biomed) | scratch |
|
34 |
| [jargon-biomed-4096](https://huggingface.co/PantagrueLLM/jargon-biomed-4096) | scratch |
|
35 |
| [jargon-NACHOS](https://huggingface.co/PantagrueLLM/jargon-NACHOS) | scratch |
|
@@ -40,6 +39,22 @@ Jargon is available in several versions with different context sizes and types o
|
|
40 |
|
41 |
The Jargon models were evaluated on an range of specialized downstream tasks.
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
For more info please check out the [paper](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf), accepted for publication at [LREC-COLING 2024](https://lrec-coling-2024.org/list-of-accepted-papers/).
|
44 |
|
45 |
|
|
|
5 |
library_name: transformers
|
6 |
tags:
|
7 |
- linformer
|
|
|
8 |
- medical
|
9 |
- RoBERTa
|
10 |
- pytorch
|
|
|
28 |
| jargon-general-legal | jargon-general-base |
|
29 |
| [jargon-multidomain-base](https://huggingface.co/PantagrueLLM/jargon-multidomain-base) | jargon-general-base |
|
30 |
| jargon-legal | scratch |
|
31 |
+
| [jargon-legal-4096](https://huggingface.co/PantagrueLLM/jargon-legal-4096) | scratch |
|
32 |
| [jargon-biomed](https://huggingface.co/PantagrueLLM/jargon-biomed) | scratch |
|
33 |
| [jargon-biomed-4096](https://huggingface.co/PantagrueLLM/jargon-biomed-4096) | scratch |
|
34 |
| [jargon-NACHOS](https://huggingface.co/PantagrueLLM/jargon-NACHOS) | scratch |
|
|
|
39 |
|
40 |
The Jargon models were evaluated on an range of specialized downstream tasks.
|
41 |
|
42 |
+
## Biomedical Benchmark
|
43 |
+
|
44 |
+
Results averaged across five funs with varying random seeds.
|
45 |
+
|
46 |
+
| |[**FrenchMedMCQA**](https://huggingface.co/datasets/qanastek/frenchmedmcqa)|[**MQC**](https://aclanthology.org/2020.lrec-1.72/)|[**CAS-POS**](https://clementdalloux.fr/?page_id=28)|[**ESSAI-POS**](https://clementdalloux.fr/?page_id=28)|[**CAS-SG**](https://aclanthology.org/W18-5614/)|[**MEDLINE**](https://huggingface.co/datasets/mnaguib/QuaeroFrenchMed)|[**EMEA**](https://huggingface.co/datasets/mnaguib/QuaeroFrenchMed)|[**E3C-NER**](https://live.european-language-grid.eu/catalogue/corpus/7618)|[**CLISTER**](https://aclanthology.org/2022.lrec-1.459/)|
|
47 |
+
|-------------------------|:-----------------------:|:-----------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|
|
48 |
+
| **Task Type** | Sequence Classification | Sequence Classification | Token Classification | Token Classification | Token Classification | Token Classification | Token Classification | Token Classification | STS |
|
49 |
+
| **Metric** | EMR | Accuracy | Macro-F1 | Macro-F1 | Weighted F1 | Weighted F1 | Weighted F1 | Weighted F1 | Spearman Correlation |
|
50 |
+
| jargon-general-base | 12.9 | 76.7 | 96.6 | 96.0 | 69.4 | 81.7 | 96.5 | 91.9 | 78.0 |
|
51 |
+
| jargon-biomed | 15.3 | 91.1 | 96.5 | 95.6 | 75.1 | 83.7 | 96.5 | 93.5 | 74.6 |
|
52 |
+
| jargon-biomed-4096 | 14.4 | 78.9 | 96.6 | 95.9 | 73.3 | 82.3 | 96.3 | 92.5 | 65.3 |
|
53 |
+
| jargon-general-biomed | 16.1 | 69.7 | 95.1 | 95.1 | 67.8 | 78.2 | 96.6 | 91.3 | 59.7 |
|
54 |
+
| jargon-multidomain-base | 14.9 | 86.9 | 96.3 | 96.0 | 70.6 | 82.4 | 96.6 | 92.6 | 74.8 |
|
55 |
+
| jargon-NACHOS | 13.3 | 90.7 | 96.3 | 96.2 | 75.0 | 83.4 | 96.8 | 93.1 | 70.9 |
|
56 |
+
| jargon-NACHOS-4096 | 18.4 | 93.2 | 96.2 | 95.9 | 74.9 | 83.8 | 96.8 | 93.2 | 74.9 |
|
57 |
+
|
58 |
For more info please check out the [paper](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf), accepted for publication at [LREC-COLING 2024](https://lrec-coling-2024.org/list-of-accepted-papers/).
|
59 |
|
60 |
|