File size: 47,270 Bytes
47bd6f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
2023-05-08 23:16:29,434 kenma_eng INFO {'train': {'log_interval': 200, 'seed': 1234, 'epochs': 20000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 4, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 12800, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'max_wav_value': 32768.0, 'sampling_rate': 40000, 'filter_length': 2048, 'hop_length': 400, 'win_length': 2048, 'n_mel_channels': 125, 'mel_fmin': 0.0, 'mel_fmax': None, 'training_files': './logs/kenma_eng/filelist.txt'}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 10, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'use_spectral_norm': False, 'gin_channels': 256, 'spk_embed_dim': 109}, 'model_dir': './logs/kenma_eng', 'experiment_dir': './logs/kenma_eng', 'save_every_epoch': 5, 'name': 'kenma_eng', 'total_epoch': 300, 'pretrainG': 'pretrained/G40k.pth', 'pretrainD': 'pretrained/D40k.pth', 'gpus': '0', 'sample_rate': '40k', 'if_f0': 0, 'if_latest': 1, 'if_cache_data_in_gpu': 1}
2023-05-08 23:16:29,434 kenma_eng WARNING /home/parappa/Retrieval-based-Voice-Conversion-WebUI/train is not a git repository, therefore hash value comparison will be ignored.
2023-05-08 23:16:30,257 kenma_eng INFO loaded pretrained pretrained/G40k.pth pretrained/D40k.pth
2023-05-08 23:16:33,875 kenma_eng INFO Train Epoch: 1 [0%]
2023-05-08 23:16:33,875 kenma_eng INFO [0, 0.0001]
2023-05-08 23:16:33,875 kenma_eng INFO loss_disc=2.865, loss_gen=2.661, loss_fm=12.986,loss_mel=27.710, loss_kl=5.000
2023-05-08 23:16:43,850 kenma_eng INFO ====> Epoch: 1
2023-05-08 23:16:51,519 kenma_eng INFO ====> Epoch: 2
2023-05-08 23:16:59,170 kenma_eng INFO ====> Epoch: 3
2023-05-08 23:17:06,842 kenma_eng INFO ====> Epoch: 4
2023-05-08 23:17:14,520 kenma_eng INFO Saving model and optimizer state at epoch 5 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:17:14,928 kenma_eng INFO Saving model and optimizer state at epoch 5 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:17:15,398 kenma_eng INFO ====> Epoch: 5
2023-05-08 23:17:16,579 kenma_eng INFO Train Epoch: 6 [64%]
2023-05-08 23:17:16,581 kenma_eng INFO [200, 9.993751562304699e-05]
2023-05-08 23:17:16,581 kenma_eng INFO loss_disc=3.256, loss_gen=2.900, loss_fm=14.750,loss_mel=22.623, loss_kl=2.727
2023-05-08 23:17:23,363 kenma_eng INFO ====> Epoch: 6
2023-05-08 23:17:31,038 kenma_eng INFO ====> Epoch: 7
2023-05-08 23:17:38,720 kenma_eng INFO ====> Epoch: 8
2023-05-08 23:17:46,403 kenma_eng INFO ====> Epoch: 9
2023-05-08 23:17:54,083 kenma_eng INFO Saving model and optimizer state at epoch 10 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:17:54,588 kenma_eng INFO Saving model and optimizer state at epoch 10 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:17:55,221 kenma_eng INFO ====> Epoch: 10
2023-05-08 23:17:57,412 kenma_eng INFO Train Epoch: 11 [87%]
2023-05-08 23:17:57,414 kenma_eng INFO [400, 9.987507028906759e-05]
2023-05-08 23:17:57,414 kenma_eng INFO loss_disc=2.973, loss_gen=2.690, loss_fm=9.204,loss_mel=17.433, loss_kl=1.308
2023-05-08 23:18:03,121 kenma_eng INFO ====> Epoch: 11
2023-05-08 23:18:10,833 kenma_eng INFO ====> Epoch: 12
2023-05-08 23:18:18,570 kenma_eng INFO ====> Epoch: 13
2023-05-08 23:18:26,316 kenma_eng INFO ====> Epoch: 14
2023-05-08 23:18:34,038 kenma_eng INFO Saving model and optimizer state at epoch 15 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:18:34,479 kenma_eng INFO Saving model and optimizer state at epoch 15 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:18:35,055 kenma_eng INFO ====> Epoch: 15
2023-05-08 23:18:38,225 kenma_eng INFO Train Epoch: 16 [64%]
2023-05-08 23:18:38,227 kenma_eng INFO [600, 9.981266397366609e-05]
2023-05-08 23:18:38,233 kenma_eng INFO loss_disc=2.721, loss_gen=3.351, loss_fm=12.137,loss_mel=21.595, loss_kl=2.537
2023-05-08 23:18:43,061 kenma_eng INFO ====> Epoch: 16
2023-05-08 23:18:50,809 kenma_eng INFO ====> Epoch: 17
2023-05-08 23:18:58,553 kenma_eng INFO ====> Epoch: 18
2023-05-08 23:19:06,305 kenma_eng INFO ====> Epoch: 19
2023-05-08 23:19:14,071 kenma_eng INFO Saving model and optimizer state at epoch 20 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:19:14,509 kenma_eng INFO Saving model and optimizer state at epoch 20 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:19:15,088 kenma_eng INFO ====> Epoch: 20
2023-05-08 23:19:19,247 kenma_eng INFO Train Epoch: 21 [3%]
2023-05-08 23:19:19,249 kenma_eng INFO [800, 9.975029665246193e-05]
2023-05-08 23:19:19,255 kenma_eng INFO loss_disc=2.381, loss_gen=3.654, loss_fm=16.410,loss_mel=22.015, loss_kl=1.045
2023-05-08 23:19:23,079 kenma_eng INFO ====> Epoch: 21
2023-05-08 23:19:30,836 kenma_eng INFO ====> Epoch: 22
2023-05-08 23:19:38,610 kenma_eng INFO ====> Epoch: 23
2023-05-08 23:19:46,392 kenma_eng INFO ====> Epoch: 24
2023-05-08 23:19:54,174 kenma_eng INFO Saving model and optimizer state at epoch 25 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:19:54,687 kenma_eng INFO Saving model and optimizer state at epoch 25 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:19:55,263 kenma_eng INFO ====> Epoch: 25
2023-05-08 23:20:00,421 kenma_eng INFO Train Epoch: 26 [79%]
2023-05-08 23:20:00,423 kenma_eng INFO [1000, 9.968796830108985e-05]
2023-05-08 23:20:00,424 kenma_eng INFO loss_disc=2.815, loss_gen=2.932, loss_fm=13.485,loss_mel=22.573, loss_kl=2.084
2023-05-08 23:20:03,231 kenma_eng INFO ====> Epoch: 26
2023-05-08 23:20:11,057 kenma_eng INFO ====> Epoch: 27
2023-05-08 23:20:18,894 kenma_eng INFO ====> Epoch: 28
2023-05-08 23:20:26,705 kenma_eng INFO ====> Epoch: 29
2023-05-08 23:20:34,555 kenma_eng INFO Saving model and optimizer state at epoch 30 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:20:34,998 kenma_eng INFO Saving model and optimizer state at epoch 30 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:20:35,579 kenma_eng INFO ====> Epoch: 30
2023-05-08 23:20:41,757 kenma_eng INFO Train Epoch: 31 [95%]
2023-05-08 23:20:41,759 kenma_eng INFO [1200, 9.962567889519979e-05]
2023-05-08 23:20:41,759 kenma_eng INFO loss_disc=2.354, loss_gen=3.439, loss_fm=14.556,loss_mel=21.892, loss_kl=2.104
2023-05-08 23:20:43,557 kenma_eng INFO ====> Epoch: 31
2023-05-08 23:20:51,393 kenma_eng INFO ====> Epoch: 32
2023-05-08 23:20:59,229 kenma_eng INFO ====> Epoch: 33
2023-05-08 23:21:07,063 kenma_eng INFO ====> Epoch: 34
2023-05-08 23:21:14,902 kenma_eng INFO Saving model and optimizer state at epoch 35 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:21:15,345 kenma_eng INFO Saving model and optimizer state at epoch 35 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:21:16,004 kenma_eng INFO ====> Epoch: 35
2023-05-08 23:21:23,238 kenma_eng INFO Train Epoch: 36 [90%]
2023-05-08 23:21:23,240 kenma_eng INFO [1400, 9.956342841045691e-05]
2023-05-08 23:21:23,240 kenma_eng INFO loss_disc=2.838, loss_gen=3.338, loss_fm=11.191,loss_mel=22.750, loss_kl=1.916
2023-05-08 23:21:24,048 kenma_eng INFO ====> Epoch: 36
2023-05-08 23:21:31,856 kenma_eng INFO ====> Epoch: 37
2023-05-08 23:21:39,717 kenma_eng INFO ====> Epoch: 38
2023-05-08 23:21:47,559 kenma_eng INFO ====> Epoch: 39
2023-05-08 23:21:55,380 kenma_eng INFO Saving model and optimizer state at epoch 40 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:21:55,826 kenma_eng INFO Saving model and optimizer state at epoch 40 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:21:56,409 kenma_eng INFO ====> Epoch: 40
2023-05-08 23:22:04,246 kenma_eng INFO ====> Epoch: 41
2023-05-08 23:22:04,648 kenma_eng INFO Train Epoch: 42 [77%]
2023-05-08 23:22:04,650 kenma_eng INFO [1600, 9.948877917043875e-05]
2023-05-08 23:22:04,650 kenma_eng INFO loss_disc=2.622, loss_gen=3.326, loss_fm=13.962,loss_mel=21.530, loss_kl=1.679
2023-05-08 23:22:12,307 kenma_eng INFO ====> Epoch: 42
2023-05-08 23:22:20,153 kenma_eng INFO ====> Epoch: 43
2023-05-08 23:22:27,975 kenma_eng INFO ====> Epoch: 44
2023-05-08 23:22:35,867 kenma_eng INFO Saving model and optimizer state at epoch 45 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:22:36,326 kenma_eng INFO Saving model and optimizer state at epoch 45 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:22:36,907 kenma_eng INFO ====> Epoch: 45
2023-05-08 23:22:44,804 kenma_eng INFO ====> Epoch: 46
2023-05-08 23:22:46,210 kenma_eng INFO Train Epoch: 47 [41%]
2023-05-08 23:22:46,212 kenma_eng INFO [1800, 9.942661422663591e-05]
2023-05-08 23:22:46,212 kenma_eng INFO loss_disc=2.595, loss_gen=3.967, loss_fm=11.861,loss_mel=20.913, loss_kl=1.444
2023-05-08 23:22:52,914 kenma_eng INFO ====> Epoch: 47
2023-05-08 23:23:00,743 kenma_eng INFO ====> Epoch: 48
2023-05-08 23:23:08,617 kenma_eng INFO ====> Epoch: 49
2023-05-08 23:23:16,504 kenma_eng INFO Saving model and optimizer state at epoch 50 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:23:16,945 kenma_eng INFO Saving model and optimizer state at epoch 50 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:23:17,525 kenma_eng INFO ====> Epoch: 50
2023-05-08 23:23:25,389 kenma_eng INFO ====> Epoch: 51
2023-05-08 23:23:27,806 kenma_eng INFO Train Epoch: 52 [41%]
2023-05-08 23:23:27,809 kenma_eng INFO [2000, 9.936448812621091e-05]
2023-05-08 23:23:27,809 kenma_eng INFO loss_disc=2.828, loss_gen=3.041, loss_fm=12.945,loss_mel=22.283, loss_kl=2.018
2023-05-08 23:23:33,516 kenma_eng INFO ====> Epoch: 52
2023-05-08 23:23:41,487 kenma_eng INFO ====> Epoch: 53
2023-05-08 23:23:49,359 kenma_eng INFO ====> Epoch: 54
2023-05-08 23:23:57,267 kenma_eng INFO Saving model and optimizer state at epoch 55 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:23:57,714 kenma_eng INFO Saving model and optimizer state at epoch 55 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:23:58,294 kenma_eng INFO ====> Epoch: 55
2023-05-08 23:24:06,121 kenma_eng INFO ====> Epoch: 56
2023-05-08 23:24:09,605 kenma_eng INFO Train Epoch: 57 [38%]
2023-05-08 23:24:09,607 kenma_eng INFO [2200, 9.930240084489267e-05]
2023-05-08 23:24:09,607 kenma_eng INFO loss_disc=2.341, loss_gen=3.577, loss_fm=14.804,loss_mel=21.295, loss_kl=0.870
2023-05-08 23:24:14,264 kenma_eng INFO ====> Epoch: 57
2023-05-08 23:24:22,253 kenma_eng INFO ====> Epoch: 58
2023-05-08 23:24:30,207 kenma_eng INFO ====> Epoch: 59
2023-05-08 23:24:38,030 kenma_eng INFO Saving model and optimizer state at epoch 60 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:24:38,477 kenma_eng INFO Saving model and optimizer state at epoch 60 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:24:39,064 kenma_eng INFO ====> Epoch: 60
2023-05-08 23:24:47,032 kenma_eng INFO ====> Epoch: 61
2023-05-08 23:24:51,555 kenma_eng INFO Train Epoch: 62 [33%]
2023-05-08 23:24:51,557 kenma_eng INFO [2400, 9.924035235842533e-05]
2023-05-08 23:24:51,557 kenma_eng INFO loss_disc=2.740, loss_gen=3.562, loss_fm=12.825,loss_mel=20.778, loss_kl=1.276
2023-05-08 23:24:55,228 kenma_eng INFO ====> Epoch: 62
2023-05-08 23:25:03,207 kenma_eng INFO ====> Epoch: 63
2023-05-08 23:25:11,196 kenma_eng INFO ====> Epoch: 64
2023-05-08 23:25:19,180 kenma_eng INFO Saving model and optimizer state at epoch 65 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:25:19,694 kenma_eng INFO Saving model and optimizer state at epoch 65 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:25:20,280 kenma_eng INFO ====> Epoch: 65
2023-05-08 23:25:28,192 kenma_eng INFO ====> Epoch: 66
2023-05-08 23:25:33,727 kenma_eng INFO Train Epoch: 67 [0%]
2023-05-08 23:25:33,729 kenma_eng INFO [2600, 9.917834264256819e-05]
2023-05-08 23:25:33,729 kenma_eng INFO loss_disc=2.601, loss_gen=3.035, loss_fm=10.245,loss_mel=21.210, loss_kl=2.084
2023-05-08 23:25:36,402 kenma_eng INFO ====> Epoch: 67
2023-05-08 23:25:44,389 kenma_eng INFO ====> Epoch: 68
2023-05-08 23:25:52,373 kenma_eng INFO ====> Epoch: 69
2023-05-08 23:26:00,358 kenma_eng INFO Saving model and optimizer state at epoch 70 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:26:00,805 kenma_eng INFO Saving model and optimizer state at epoch 70 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:26:01,399 kenma_eng INFO ====> Epoch: 70
2023-05-08 23:26:09,359 kenma_eng INFO ====> Epoch: 71
2023-05-08 23:26:15,915 kenma_eng INFO Train Epoch: 72 [8%]
2023-05-08 23:26:15,917 kenma_eng INFO [2800, 9.911637167309565e-05]
2023-05-08 23:26:15,917 kenma_eng INFO loss_disc=2.281, loss_gen=3.312, loss_fm=16.278,loss_mel=20.006, loss_kl=0.428
2023-05-08 23:26:17,543 kenma_eng INFO ====> Epoch: 72
2023-05-08 23:26:25,536 kenma_eng INFO ====> Epoch: 73
2023-05-08 23:26:33,529 kenma_eng INFO ====> Epoch: 74
2023-05-08 23:26:41,518 kenma_eng INFO Saving model and optimizer state at epoch 75 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:26:42,031 kenma_eng INFO Saving model and optimizer state at epoch 75 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:26:42,634 kenma_eng INFO ====> Epoch: 75
2023-05-08 23:26:50,526 kenma_eng INFO ====> Epoch: 76
2023-05-08 23:26:58,105 kenma_eng INFO Train Epoch: 77 [56%]
2023-05-08 23:26:58,107 kenma_eng INFO [3000, 9.905443942579728e-05]
2023-05-08 23:26:58,107 kenma_eng INFO loss_disc=2.649, loss_gen=3.208, loss_fm=13.554,loss_mel=20.792, loss_kl=1.335
2023-05-08 23:26:58,734 kenma_eng INFO ====> Epoch: 77
2023-05-08 23:27:06,700 kenma_eng INFO ====> Epoch: 78
2023-05-08 23:27:14,694 kenma_eng INFO ====> Epoch: 79
2023-05-08 23:27:22,675 kenma_eng INFO Saving model and optimizer state at epoch 80 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:27:23,121 kenma_eng INFO Saving model and optimizer state at epoch 80 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:27:23,707 kenma_eng INFO ====> Epoch: 80
2023-05-08 23:27:31,694 kenma_eng INFO ====> Epoch: 81
2023-05-08 23:27:39,679 kenma_eng INFO ====> Epoch: 82
2023-05-08 23:27:40,296 kenma_eng INFO Train Epoch: 83 [90%]
2023-05-08 23:27:40,297 kenma_eng INFO [3200, 9.89801718082432e-05]
2023-05-08 23:27:40,298 kenma_eng INFO loss_disc=2.784, loss_gen=3.327, loss_fm=13.070,loss_mel=20.826, loss_kl=1.661
2023-05-08 23:27:47,887 kenma_eng INFO ====> Epoch: 83
2023-05-08 23:27:55,860 kenma_eng INFO ====> Epoch: 84
2023-05-08 23:28:03,843 kenma_eng INFO Saving model and optimizer state at epoch 85 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:28:04,357 kenma_eng INFO Saving model and optimizer state at epoch 85 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:28:04,947 kenma_eng INFO ====> Epoch: 85
2023-05-08 23:28:12,858 kenma_eng INFO ====> Epoch: 86
2023-05-08 23:28:20,842 kenma_eng INFO ====> Epoch: 87
2023-05-08 23:28:22,477 kenma_eng INFO Train Epoch: 88 [69%]
2023-05-08 23:28:22,478 kenma_eng INFO [3400, 9.891832466458178e-05]
2023-05-08 23:28:22,478 kenma_eng INFO loss_disc=2.293, loss_gen=3.493, loss_fm=13.095,loss_mel=20.620, loss_kl=1.292
2023-05-08 23:28:29,030 kenma_eng INFO ====> Epoch: 88
2023-05-08 23:28:37,020 kenma_eng INFO ====> Epoch: 89
2023-05-08 23:28:45,012 kenma_eng INFO Saving model and optimizer state at epoch 90 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:28:45,460 kenma_eng INFO Saving model and optimizer state at epoch 90 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:28:46,058 kenma_eng INFO ====> Epoch: 90
2023-05-08 23:28:54,021 kenma_eng INFO ====> Epoch: 91
2023-05-08 23:29:02,004 kenma_eng INFO ====> Epoch: 92
2023-05-08 23:29:04,663 kenma_eng INFO Train Epoch: 93 [54%]
2023-05-08 23:29:04,665 kenma_eng INFO [3600, 9.885651616572276e-05]
2023-05-08 23:29:04,665 kenma_eng INFO loss_disc=2.701, loss_gen=3.218, loss_fm=14.823,loss_mel=21.348, loss_kl=1.524
2023-05-08 23:29:10,207 kenma_eng INFO ====> Epoch: 93
2023-05-08 23:29:18,185 kenma_eng INFO ====> Epoch: 94
2023-05-08 23:29:26,168 kenma_eng INFO Saving model and optimizer state at epoch 95 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:29:26,687 kenma_eng INFO Saving model and optimizer state at epoch 95 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:29:27,286 kenma_eng INFO ====> Epoch: 95
2023-05-08 23:29:35,168 kenma_eng INFO ====> Epoch: 96
2023-05-08 23:29:43,162 kenma_eng INFO ====> Epoch: 97
2023-05-08 23:29:46,855 kenma_eng INFO Train Epoch: 98 [77%]
2023-05-08 23:29:46,857 kenma_eng INFO [3800, 9.879474628751914e-05]
2023-05-08 23:29:46,857 kenma_eng INFO loss_disc=2.413, loss_gen=3.459, loss_fm=11.920,loss_mel=20.858, loss_kl=1.785
2023-05-08 23:29:51,362 kenma_eng INFO ====> Epoch: 98
2023-05-08 23:29:59,345 kenma_eng INFO ====> Epoch: 99
2023-05-08 23:30:07,336 kenma_eng INFO Saving model and optimizer state at epoch 100 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:30:07,786 kenma_eng INFO Saving model and optimizer state at epoch 100 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:30:08,374 kenma_eng INFO ====> Epoch: 100
2023-05-08 23:30:16,340 kenma_eng INFO ====> Epoch: 101
2023-05-08 23:30:24,332 kenma_eng INFO ====> Epoch: 102
2023-05-08 23:30:29,044 kenma_eng INFO Train Epoch: 103 [36%]
2023-05-08 23:30:29,046 kenma_eng INFO [4000, 9.873301500583906e-05]
2023-05-08 23:30:29,046 kenma_eng INFO loss_disc=2.663, loss_gen=3.403, loss_fm=14.288,loss_mel=20.431, loss_kl=1.184
2023-05-08 23:30:32,543 kenma_eng INFO ====> Epoch: 103
2023-05-08 23:30:40,508 kenma_eng INFO ====> Epoch: 104
2023-05-08 23:30:48,502 kenma_eng INFO Saving model and optimizer state at epoch 105 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:30:49,017 kenma_eng INFO Saving model and optimizer state at epoch 105 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:30:49,617 kenma_eng INFO ====> Epoch: 105
2023-05-08 23:30:57,507 kenma_eng INFO ====> Epoch: 106
2023-05-08 23:31:05,520 kenma_eng INFO ====> Epoch: 107
2023-05-08 23:31:11,235 kenma_eng INFO Train Epoch: 108 [3%]
2023-05-08 23:31:11,237 kenma_eng INFO [4200, 9.867132229656573e-05]
2023-05-08 23:31:11,237 kenma_eng INFO loss_disc=1.916, loss_gen=3.703, loss_fm=16.316,loss_mel=18.907, loss_kl=1.553
2023-05-08 23:31:13,688 kenma_eng INFO ====> Epoch: 108
2023-05-08 23:31:21,677 kenma_eng INFO ====> Epoch: 109
2023-05-08 23:31:29,658 kenma_eng INFO Saving model and optimizer state at epoch 110 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:31:30,174 kenma_eng INFO Saving model and optimizer state at epoch 110 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:31:30,771 kenma_eng INFO ====> Epoch: 110
2023-05-08 23:31:38,672 kenma_eng INFO ====> Epoch: 111
2023-05-08 23:31:46,661 kenma_eng INFO ====> Epoch: 112
2023-05-08 23:31:53,418 kenma_eng INFO Train Epoch: 113 [10%]
2023-05-08 23:31:53,420 kenma_eng INFO [4400, 9.86096681355974e-05]
2023-05-08 23:31:53,420 kenma_eng INFO loss_disc=1.807, loss_gen=4.457, loss_fm=15.467,loss_mel=19.595, loss_kl=1.601
2023-05-08 23:31:54,848 kenma_eng INFO ====> Epoch: 113
2023-05-08 23:32:02,841 kenma_eng INFO ====> Epoch: 114
2023-05-08 23:32:10,823 kenma_eng INFO Saving model and optimizer state at epoch 115 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:32:11,338 kenma_eng INFO Saving model and optimizer state at epoch 115 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:32:11,933 kenma_eng INFO ====> Epoch: 115
2023-05-08 23:32:19,838 kenma_eng INFO ====> Epoch: 116
2023-05-08 23:32:27,835 kenma_eng INFO ====> Epoch: 117
2023-05-08 23:32:35,603 kenma_eng INFO Train Epoch: 118 [46%]
2023-05-08 23:32:35,605 kenma_eng INFO [4600, 9.854805249884741e-05]
2023-05-08 23:32:35,605 kenma_eng INFO loss_disc=1.976, loss_gen=4.144, loss_fm=14.899,loss_mel=20.415, loss_kl=0.905
2023-05-08 23:32:36,017 kenma_eng INFO ====> Epoch: 118
2023-05-08 23:32:44,002 kenma_eng INFO ====> Epoch: 119
2023-05-08 23:32:51,993 kenma_eng INFO Saving model and optimizer state at epoch 120 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:32:52,439 kenma_eng INFO Saving model and optimizer state at epoch 120 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:32:53,035 kenma_eng INFO ====> Epoch: 120
2023-05-08 23:33:01,001 kenma_eng INFO ====> Epoch: 121
2023-05-08 23:33:08,988 kenma_eng INFO ====> Epoch: 122
2023-05-08 23:33:16,979 kenma_eng INFO ====> Epoch: 123
2023-05-08 23:33:17,795 kenma_eng INFO Train Epoch: 124 [15%]
2023-05-08 23:33:17,797 kenma_eng INFO [4800, 9.847416455282387e-05]
2023-05-08 23:33:17,797 kenma_eng INFO loss_disc=2.059, loss_gen=3.385, loss_fm=13.991,loss_mel=20.368, loss_kl=1.581
2023-05-08 23:33:25,166 kenma_eng INFO ====> Epoch: 124
2023-05-08 23:33:33,154 kenma_eng INFO Saving model and optimizer state at epoch 125 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:33:33,602 kenma_eng INFO Saving model and optimizer state at epoch 125 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:33:34,191 kenma_eng INFO ====> Epoch: 125
2023-05-08 23:33:42,168 kenma_eng INFO ====> Epoch: 126
2023-05-08 23:33:50,149 kenma_eng INFO ====> Epoch: 127
2023-05-08 23:33:58,139 kenma_eng INFO ====> Epoch: 128
2023-05-08 23:33:59,983 kenma_eng INFO Train Epoch: 129 [21%]
2023-05-08 23:33:59,985 kenma_eng INFO [5000, 9.841263358464336e-05]
2023-05-08 23:33:59,985 kenma_eng INFO loss_disc=2.190, loss_gen=4.590, loss_fm=14.053,loss_mel=20.084, loss_kl=1.679
2023-05-08 23:34:06,332 kenma_eng INFO ====> Epoch: 129
2023-05-08 23:34:14,316 kenma_eng INFO Saving model and optimizer state at epoch 130 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:34:14,754 kenma_eng INFO Saving model and optimizer state at epoch 130 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:34:15,340 kenma_eng INFO ====> Epoch: 130
2023-05-08 23:34:23,386 kenma_eng INFO ====> Epoch: 131
2023-05-08 23:34:31,310 kenma_eng INFO ====> Epoch: 132
2023-05-08 23:34:39,298 kenma_eng INFO ====> Epoch: 133
2023-05-08 23:34:42,164 kenma_eng INFO Train Epoch: 134 [23%]
2023-05-08 23:34:42,166 kenma_eng INFO [5200, 9.835114106370493e-05]
2023-05-08 23:34:42,166 kenma_eng INFO loss_disc=2.070, loss_gen=3.735, loss_fm=13.641,loss_mel=19.528, loss_kl=1.520
2023-05-08 23:34:47,491 kenma_eng INFO ====> Epoch: 134
2023-05-08 23:34:55,475 kenma_eng INFO Saving model and optimizer state at epoch 135 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:34:55,917 kenma_eng INFO Saving model and optimizer state at epoch 135 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:34:56,507 kenma_eng INFO ====> Epoch: 135
2023-05-08 23:35:04,564 kenma_eng INFO ====> Epoch: 136
2023-05-08 23:35:12,480 kenma_eng INFO ====> Epoch: 137
2023-05-08 23:35:20,467 kenma_eng INFO ====> Epoch: 138
2023-05-08 23:35:24,388 kenma_eng INFO Train Epoch: 139 [23%]
2023-05-08 23:35:24,390 kenma_eng INFO [5400, 9.828968696598508e-05]
2023-05-08 23:35:24,390 kenma_eng INFO loss_disc=2.168, loss_gen=3.409, loss_fm=14.586,loss_mel=18.876, loss_kl=0.873
2023-05-08 23:35:28,651 kenma_eng INFO ====> Epoch: 139
2023-05-08 23:35:36,641 kenma_eng INFO Saving model and optimizer state at epoch 140 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:35:37,082 kenma_eng INFO Saving model and optimizer state at epoch 140 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:35:37,672 kenma_eng INFO ====> Epoch: 140
2023-05-08 23:35:45,661 kenma_eng INFO ====> Epoch: 141
2023-05-08 23:35:53,641 kenma_eng INFO ====> Epoch: 142
2023-05-08 23:36:01,637 kenma_eng INFO ====> Epoch: 143
2023-05-08 23:36:06,547 kenma_eng INFO Train Epoch: 144 [31%]
2023-05-08 23:36:06,549 kenma_eng INFO [5600, 9.822827126747529e-05]
2023-05-08 23:36:06,549 kenma_eng INFO loss_disc=1.980, loss_gen=3.789, loss_fm=14.169,loss_mel=19.720, loss_kl=0.746
2023-05-08 23:36:09,814 kenma_eng INFO ====> Epoch: 144
2023-05-08 23:36:17,808 kenma_eng INFO Saving model and optimizer state at epoch 145 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:36:18,249 kenma_eng INFO Saving model and optimizer state at epoch 145 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:36:18,847 kenma_eng INFO ====> Epoch: 145
2023-05-08 23:36:26,822 kenma_eng INFO ====> Epoch: 146
2023-05-08 23:36:34,812 kenma_eng INFO ====> Epoch: 147
2023-05-08 23:36:42,795 kenma_eng INFO ====> Epoch: 148
2023-05-08 23:36:48,738 kenma_eng INFO Train Epoch: 149 [28%]
2023-05-08 23:36:48,740 kenma_eng INFO [5800, 9.816689394418209e-05]
2023-05-08 23:36:48,740 kenma_eng INFO loss_disc=1.871, loss_gen=4.337, loss_fm=16.396,loss_mel=21.222, loss_kl=1.508
2023-05-08 23:36:50,973 kenma_eng INFO ====> Epoch: 149
2023-05-08 23:36:58,976 kenma_eng INFO Saving model and optimizer state at epoch 150 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:36:59,418 kenma_eng INFO Saving model and optimizer state at epoch 150 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:37:00,082 kenma_eng INFO ====> Epoch: 150
2023-05-08 23:37:07,986 kenma_eng INFO ====> Epoch: 151
2023-05-08 23:37:15,972 kenma_eng INFO ====> Epoch: 152
2023-05-08 23:37:23,958 kenma_eng INFO ====> Epoch: 153
2023-05-08 23:37:30,918 kenma_eng INFO Train Epoch: 154 [15%]
2023-05-08 23:37:30,920 kenma_eng INFO [6000, 9.810555497212693e-05]
2023-05-08 23:37:30,920 kenma_eng INFO loss_disc=2.035, loss_gen=3.760, loss_fm=14.298,loss_mel=19.946, loss_kl=0.859
2023-05-08 23:37:32,146 kenma_eng INFO ====> Epoch: 154
2023-05-08 23:37:40,134 kenma_eng INFO Saving model and optimizer state at epoch 155 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:37:40,581 kenma_eng INFO Saving model and optimizer state at epoch 155 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:37:41,176 kenma_eng INFO ====> Epoch: 155
2023-05-08 23:37:49,137 kenma_eng INFO ====> Epoch: 156
2023-05-08 23:37:57,140 kenma_eng INFO ====> Epoch: 157
2023-05-08 23:38:05,114 kenma_eng INFO ====> Epoch: 158
2023-05-08 23:38:13,105 kenma_eng INFO Train Epoch: 159 [74%]
2023-05-08 23:38:13,107 kenma_eng INFO [6200, 9.804425432734629e-05]
2023-05-08 23:38:13,107 kenma_eng INFO loss_disc=2.096, loss_gen=3.140, loss_fm=12.766,loss_mel=18.966, loss_kl=1.000
2023-05-08 23:38:13,311 kenma_eng INFO ====> Epoch: 159
2023-05-08 23:38:21,298 kenma_eng INFO Saving model and optimizer state at epoch 160 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:38:21,736 kenma_eng INFO Saving model and optimizer state at epoch 160 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:38:22,323 kenma_eng INFO ====> Epoch: 160
2023-05-08 23:38:30,331 kenma_eng INFO ====> Epoch: 161
2023-05-08 23:38:38,303 kenma_eng INFO ====> Epoch: 162
2023-05-08 23:38:46,283 kenma_eng INFO ====> Epoch: 163
2023-05-08 23:38:54,272 kenma_eng INFO ====> Epoch: 164
2023-05-08 23:38:55,298 kenma_eng INFO Train Epoch: 165 [85%]
2023-05-08 23:38:55,300 kenma_eng INFO [6400, 9.797074411189339e-05]
2023-05-08 23:38:55,300 kenma_eng INFO loss_disc=2.262, loss_gen=3.843, loss_fm=14.559,loss_mel=18.460, loss_kl=2.523
2023-05-08 23:39:02,463 kenma_eng INFO Saving model and optimizer state at epoch 165 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:39:02,906 kenma_eng INFO Saving model and optimizer state at epoch 165 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:39:03,495 kenma_eng INFO ====> Epoch: 165
2023-05-08 23:39:11,468 kenma_eng INFO ====> Epoch: 166
2023-05-08 23:39:19,459 kenma_eng INFO ====> Epoch: 167
2023-05-08 23:39:27,505 kenma_eng INFO ====> Epoch: 168
2023-05-08 23:39:35,435 kenma_eng INFO ====> Epoch: 169
2023-05-08 23:39:37,485 kenma_eng INFO Train Epoch: 170 [8%]
2023-05-08 23:39:37,487 kenma_eng INFO [6600, 9.790952770283884e-05]
2023-05-08 23:39:37,487 kenma_eng INFO loss_disc=1.409, loss_gen=5.128, loss_fm=18.067,loss_mel=19.149, loss_kl=1.303
2023-05-08 23:39:43,615 kenma_eng INFO Saving model and optimizer state at epoch 170 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:39:44,138 kenma_eng INFO Saving model and optimizer state at epoch 170 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:39:44,729 kenma_eng INFO ====> Epoch: 170
2023-05-08 23:39:52,633 kenma_eng INFO ====> Epoch: 171
2023-05-08 23:40:00,623 kenma_eng INFO ====> Epoch: 172
2023-05-08 23:40:08,648 kenma_eng INFO ====> Epoch: 173
2023-05-08 23:40:16,595 kenma_eng INFO ====> Epoch: 174
2023-05-08 23:40:19,755 kenma_eng INFO Train Epoch: 175 [54%]
2023-05-08 23:40:19,756 kenma_eng INFO [6800, 9.784834954447608e-05]
2023-05-08 23:40:19,757 kenma_eng INFO loss_disc=2.381, loss_gen=3.203, loss_fm=11.890,loss_mel=21.385, loss_kl=0.766
2023-05-08 23:40:24,789 kenma_eng INFO Saving model and optimizer state at epoch 175 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:40:25,234 kenma_eng INFO Saving model and optimizer state at epoch 175 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:40:25,825 kenma_eng INFO ====> Epoch: 175
2023-05-08 23:40:33,850 kenma_eng INFO ====> Epoch: 176
2023-05-08 23:40:41,790 kenma_eng INFO ====> Epoch: 177
2023-05-08 23:40:49,786 kenma_eng INFO ====> Epoch: 178
2023-05-08 23:40:57,761 kenma_eng INFO ====> Epoch: 179
2023-05-08 23:41:01,856 kenma_eng INFO Train Epoch: 180 [77%]
2023-05-08 23:41:01,858 kenma_eng INFO [7000, 9.778720961290439e-05]
2023-05-08 23:41:01,858 kenma_eng INFO loss_disc=2.326, loss_gen=3.396, loss_fm=11.155,loss_mel=19.969, loss_kl=0.927
2023-05-08 23:41:05,949 kenma_eng INFO Saving model and optimizer state at epoch 180 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:41:06,388 kenma_eng INFO Saving model and optimizer state at epoch 180 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:41:07,021 kenma_eng INFO ====> Epoch: 180
2023-05-08 23:41:14,966 kenma_eng INFO ====> Epoch: 181
2023-05-08 23:41:22,944 kenma_eng INFO ====> Epoch: 182
2023-05-08 23:41:30,931 kenma_eng INFO ====> Epoch: 183
2023-05-08 23:41:38,913 kenma_eng INFO ====> Epoch: 184
2023-05-08 23:41:44,053 kenma_eng INFO Train Epoch: 185 [0%]
2023-05-08 23:41:44,055 kenma_eng INFO [7200, 9.772610788423802e-05]
2023-05-08 23:41:44,055 kenma_eng INFO loss_disc=2.721, loss_gen=3.359, loss_fm=11.969,loss_mel=20.092, loss_kl=1.441
2023-05-08 23:41:47,110 kenma_eng INFO Saving model and optimizer state at epoch 185 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:41:47,552 kenma_eng INFO Saving model and optimizer state at epoch 185 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:41:48,181 kenma_eng INFO ====> Epoch: 185
2023-05-08 23:41:56,123 kenma_eng INFO ====> Epoch: 186
2023-05-08 23:42:04,106 kenma_eng INFO ====> Epoch: 187
2023-05-08 23:42:12,098 kenma_eng INFO ====> Epoch: 188
2023-05-08 23:42:20,079 kenma_eng INFO ====> Epoch: 189
2023-05-08 23:42:26,233 kenma_eng INFO Train Epoch: 190 [82%]
2023-05-08 23:42:26,235 kenma_eng INFO [7400, 9.766504433460612e-05]
2023-05-08 23:42:26,235 kenma_eng INFO loss_disc=2.463, loss_gen=3.253, loss_fm=12.856,loss_mel=20.189, loss_kl=1.383
2023-05-08 23:42:28,279 kenma_eng INFO Saving model and optimizer state at epoch 190 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:42:28,720 kenma_eng INFO Saving model and optimizer state at epoch 190 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:42:29,312 kenma_eng INFO ====> Epoch: 190
2023-05-08 23:42:37,292 kenma_eng INFO ====> Epoch: 191
2023-05-08 23:42:45,275 kenma_eng INFO ====> Epoch: 192
2023-05-08 23:42:53,260 kenma_eng INFO ====> Epoch: 193
2023-05-08 23:43:01,244 kenma_eng INFO ====> Epoch: 194
2023-05-08 23:43:08,421 kenma_eng INFO Train Epoch: 195 [79%]
2023-05-08 23:43:08,423 kenma_eng INFO [7600, 9.760401894015275e-05]
2023-05-08 23:43:08,423 kenma_eng INFO loss_disc=2.311, loss_gen=3.909, loss_fm=15.471,loss_mel=20.243, loss_kl=0.945
2023-05-08 23:43:09,440 kenma_eng INFO Saving model and optimizer state at epoch 195 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:43:09,885 kenma_eng INFO Saving model and optimizer state at epoch 195 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:43:10,475 kenma_eng INFO ====> Epoch: 195
2023-05-08 23:43:18,448 kenma_eng INFO ====> Epoch: 196
2023-05-08 23:43:26,436 kenma_eng INFO ====> Epoch: 197
2023-05-08 23:43:34,429 kenma_eng INFO ====> Epoch: 198
2023-05-08 23:43:42,411 kenma_eng INFO ====> Epoch: 199
2023-05-08 23:43:50,397 kenma_eng INFO Saving model and optimizer state at epoch 200 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:43:50,842 kenma_eng INFO Saving model and optimizer state at epoch 200 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:43:51,432 kenma_eng INFO ====> Epoch: 200
2023-05-08 23:43:51,633 kenma_eng INFO Train Epoch: 201 [8%]
2023-05-08 23:43:51,635 kenma_eng INFO [7800, 9.753083879807726e-05]
2023-05-08 23:43:51,635 kenma_eng INFO loss_disc=1.920, loss_gen=3.953, loss_fm=12.891,loss_mel=18.567, loss_kl=0.669
2023-05-08 23:43:59,614 kenma_eng INFO ====> Epoch: 201
2023-05-08 23:44:07,601 kenma_eng INFO ====> Epoch: 202
2023-05-08 23:44:15,593 kenma_eng INFO ====> Epoch: 203
2023-05-08 23:44:23,573 kenma_eng INFO ====> Epoch: 204
2023-05-08 23:44:31,560 kenma_eng INFO Saving model and optimizer state at epoch 205 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:44:32,007 kenma_eng INFO Saving model and optimizer state at epoch 205 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:44:32,598 kenma_eng INFO ====> Epoch: 205
2023-05-08 23:44:33,807 kenma_eng INFO Train Epoch: 206 [74%]
2023-05-08 23:44:33,809 kenma_eng INFO [8000, 9.746989726111722e-05]
2023-05-08 23:44:33,809 kenma_eng INFO loss_disc=2.143, loss_gen=3.504, loss_fm=13.130,loss_mel=20.380, loss_kl=0.445
2023-05-08 23:44:40,776 kenma_eng INFO ====> Epoch: 206
2023-05-08 23:44:48,772 kenma_eng INFO ====> Epoch: 207
2023-05-08 23:44:56,761 kenma_eng INFO ====> Epoch: 208
2023-05-08 23:45:04,741 kenma_eng INFO ====> Epoch: 209
2023-05-08 23:45:12,711 kenma_eng INFO Saving model and optimizer state at epoch 210 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:45:13,161 kenma_eng INFO Saving model and optimizer state at epoch 210 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:45:13,755 kenma_eng INFO ====> Epoch: 210
2023-05-08 23:45:15,997 kenma_eng INFO Train Epoch: 211 [56%]
2023-05-08 23:45:15,999 kenma_eng INFO [8200, 9.740899380309685e-05]
2023-05-08 23:45:16,000 kenma_eng INFO loss_disc=2.647, loss_gen=3.253, loss_fm=12.424,loss_mel=19.522, loss_kl=1.341
2023-05-08 23:45:21,938 kenma_eng INFO ====> Epoch: 211
2023-05-08 23:45:29,968 kenma_eng INFO ====> Epoch: 212
2023-05-08 23:45:37,921 kenma_eng INFO ====> Epoch: 213
2023-05-08 23:45:45,913 kenma_eng INFO ====> Epoch: 214
2023-05-08 23:45:53,892 kenma_eng INFO Saving model and optimizer state at epoch 215 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:45:54,339 kenma_eng INFO Saving model and optimizer state at epoch 215 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:45:55,005 kenma_eng INFO ====> Epoch: 215
2023-05-08 23:45:58,212 kenma_eng INFO Train Epoch: 216 [10%]
2023-05-08 23:45:58,213 kenma_eng INFO [8400, 9.734812840022278e-05]
2023-05-08 23:45:58,213 kenma_eng INFO loss_disc=1.651, loss_gen=4.591, loss_fm=16.276,loss_mel=18.822, loss_kl=1.662
2023-05-08 23:46:03,103 kenma_eng INFO ====> Epoch: 216
2023-05-08 23:46:11,152 kenma_eng INFO ====> Epoch: 217
2023-05-08 23:46:19,078 kenma_eng INFO ====> Epoch: 218
2023-05-08 23:46:27,069 kenma_eng INFO ====> Epoch: 219
2023-05-08 23:46:35,047 kenma_eng INFO Saving model and optimizer state at epoch 220 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:46:35,573 kenma_eng INFO Saving model and optimizer state at epoch 220 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:46:36,161 kenma_eng INFO ====> Epoch: 220
2023-05-08 23:46:40,377 kenma_eng INFO Train Epoch: 221 [21%]
2023-05-08 23:46:40,379 kenma_eng INFO [8600, 9.728730102871649e-05]
2023-05-08 23:46:40,379 kenma_eng INFO loss_disc=2.058, loss_gen=3.767, loss_fm=15.166,loss_mel=19.089, loss_kl=1.259
2023-05-08 23:46:44,263 kenma_eng INFO ====> Epoch: 221
2023-05-08 23:46:52,259 kenma_eng INFO ====> Epoch: 222
2023-05-08 23:47:00,242 kenma_eng INFO ====> Epoch: 223
2023-05-08 23:47:08,233 kenma_eng INFO ====> Epoch: 224
2023-05-08 23:47:16,214 kenma_eng INFO Saving model and optimizer state at epoch 225 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:47:16,656 kenma_eng INFO Saving model and optimizer state at epoch 225 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:47:17,319 kenma_eng INFO ====> Epoch: 225
2023-05-08 23:47:22,570 kenma_eng INFO Train Epoch: 226 [79%]
2023-05-08 23:47:22,572 kenma_eng INFO [8800, 9.722651166481428e-05]
2023-05-08 23:47:22,572 kenma_eng INFO loss_disc=2.134, loss_gen=4.268, loss_fm=14.685,loss_mel=20.430, loss_kl=0.855
2023-05-08 23:47:25,435 kenma_eng INFO ====> Epoch: 226
2023-05-08 23:47:33,430 kenma_eng INFO ====> Epoch: 227
2023-05-08 23:47:41,401 kenma_eng INFO ====> Epoch: 228
2023-05-08 23:47:49,399 kenma_eng INFO ====> Epoch: 229
2023-05-08 23:47:57,379 kenma_eng INFO Saving model and optimizer state at epoch 230 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:47:57,900 kenma_eng INFO Saving model and optimizer state at epoch 230 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:47:58,488 kenma_eng INFO ====> Epoch: 230
2023-05-08 23:48:04,754 kenma_eng INFO Train Epoch: 231 [46%]
2023-05-08 23:48:04,756 kenma_eng INFO [9000, 9.716576028476738e-05]
2023-05-08 23:48:04,756 kenma_eng INFO loss_disc=2.041, loss_gen=3.526, loss_fm=14.019,loss_mel=19.166, loss_kl=0.711
2023-05-08 23:48:06,597 kenma_eng INFO ====> Epoch: 231
2023-05-08 23:48:14,585 kenma_eng INFO ====> Epoch: 232
2023-05-08 23:48:22,576 kenma_eng INFO ====> Epoch: 233
2023-05-08 23:48:30,553 kenma_eng INFO ====> Epoch: 234
2023-05-08 23:48:38,542 kenma_eng INFO Saving model and optimizer state at epoch 235 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:48:38,992 kenma_eng INFO Saving model and optimizer state at epoch 235 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:48:39,660 kenma_eng INFO ====> Epoch: 235
2023-05-08 23:48:46,940 kenma_eng INFO Train Epoch: 236 [87%]
2023-05-08 23:48:46,942 kenma_eng INFO [9200, 9.710504686484176e-05]
2023-05-08 23:48:46,942 kenma_eng INFO loss_disc=2.383, loss_gen=3.182, loss_fm=11.174,loss_mel=15.138, loss_kl=0.837
2023-05-08 23:48:47,751 kenma_eng INFO ====> Epoch: 236
2023-05-08 23:48:55,741 kenma_eng INFO ====> Epoch: 237
2023-05-08 23:49:03,728 kenma_eng INFO ====> Epoch: 238
2023-05-08 23:49:11,714 kenma_eng INFO ====> Epoch: 239
2023-05-08 23:49:19,703 kenma_eng INFO Saving model and optimizer state at epoch 240 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:49:20,149 kenma_eng INFO Saving model and optimizer state at epoch 240 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:49:20,742 kenma_eng INFO ====> Epoch: 240
2023-05-08 23:49:28,723 kenma_eng INFO ====> Epoch: 241
2023-05-08 23:49:29,133 kenma_eng INFO Train Epoch: 242 [0%]
2023-05-08 23:49:29,135 kenma_eng INFO [9400, 9.703224083489565e-05]
2023-05-08 23:49:29,136 kenma_eng INFO loss_disc=2.283, loss_gen=3.906, loss_fm=14.977,loss_mel=21.196, loss_kl=1.113
2023-05-08 23:49:36,904 kenma_eng INFO ====> Epoch: 242
2023-05-08 23:49:44,893 kenma_eng INFO ====> Epoch: 243
2023-05-08 23:49:52,895 kenma_eng INFO ====> Epoch: 244
2023-05-08 23:50:00,868 kenma_eng INFO Saving model and optimizer state at epoch 245 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:50:01,309 kenma_eng INFO Saving model and optimizer state at epoch 245 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:50:01,892 kenma_eng INFO ====> Epoch: 245
2023-05-08 23:50:09,880 kenma_eng INFO ====> Epoch: 246
2023-05-08 23:50:11,310 kenma_eng INFO Train Epoch: 247 [41%]
2023-05-08 23:50:11,312 kenma_eng INFO [9600, 9.69716108437664e-05]
2023-05-08 23:50:11,319 kenma_eng INFO loss_disc=2.562, loss_gen=3.062, loss_fm=13.378,loss_mel=19.740, loss_kl=1.235
2023-05-08 23:50:18,069 kenma_eng INFO ====> Epoch: 247
2023-05-08 23:50:26,064 kenma_eng INFO ====> Epoch: 248
2023-05-08 23:50:34,048 kenma_eng INFO ====> Epoch: 249
2023-05-08 23:50:42,027 kenma_eng INFO Saving model and optimizer state at epoch 250 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:50:42,471 kenma_eng INFO Saving model and optimizer state at epoch 250 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:50:43,131 kenma_eng INFO ====> Epoch: 250
2023-05-08 23:50:51,039 kenma_eng INFO ====> Epoch: 251
2023-05-08 23:50:53,497 kenma_eng INFO Train Epoch: 252 [95%]
2023-05-08 23:50:53,499 kenma_eng INFO [9800, 9.691101873690936e-05]
2023-05-08 23:50:53,499 kenma_eng INFO loss_disc=2.281, loss_gen=4.156, loss_fm=13.992,loss_mel=18.462, loss_kl=0.613
2023-05-08 23:50:59,238 kenma_eng INFO ====> Epoch: 252
2023-05-08 23:51:07,244 kenma_eng INFO ====> Epoch: 253
2023-05-08 23:51:15,210 kenma_eng INFO ====> Epoch: 254
2023-05-08 23:51:23,192 kenma_eng INFO Saving model and optimizer state at epoch 255 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:51:23,634 kenma_eng INFO Saving model and optimizer state at epoch 255 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:51:24,218 kenma_eng INFO ====> Epoch: 255
2023-05-08 23:51:32,206 kenma_eng INFO ====> Epoch: 256
2023-05-08 23:51:35,692 kenma_eng INFO Train Epoch: 257 [36%]
2023-05-08 23:51:35,694 kenma_eng INFO [10000, 9.685046449065278e-05]
2023-05-08 23:51:35,694 kenma_eng INFO loss_disc=2.226, loss_gen=3.927, loss_fm=11.863,loss_mel=18.904, loss_kl=1.791
2023-05-08 23:51:40,405 kenma_eng INFO ====> Epoch: 257
2023-05-08 23:51:48,408 kenma_eng INFO ====> Epoch: 258
2023-05-08 23:51:56,374 kenma_eng INFO ====> Epoch: 259
2023-05-08 23:52:04,354 kenma_eng INFO Saving model and optimizer state at epoch 260 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:52:04,801 kenma_eng INFO Saving model and optimizer state at epoch 260 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:52:05,389 kenma_eng INFO ====> Epoch: 260
2023-05-08 23:52:13,367 kenma_eng INFO ====> Epoch: 261
2023-05-08 23:52:17,873 kenma_eng INFO Train Epoch: 262 [51%]
2023-05-08 23:52:17,875 kenma_eng INFO [10200, 9.678994808133967e-05]
2023-05-08 23:52:17,875 kenma_eng INFO loss_disc=2.367, loss_gen=3.552, loss_fm=12.217,loss_mel=14.802, loss_kl=0.540
2023-05-08 23:52:21,594 kenma_eng INFO ====> Epoch: 262
2023-05-08 23:52:29,549 kenma_eng INFO ====> Epoch: 263
2023-05-08 23:52:37,537 kenma_eng INFO ====> Epoch: 264
2023-05-08 23:52:45,520 kenma_eng INFO Saving model and optimizer state at epoch 265 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:52:45,968 kenma_eng INFO Saving model and optimizer state at epoch 265 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:52:46,558 kenma_eng INFO ====> Epoch: 265
2023-05-08 23:52:54,545 kenma_eng INFO ====> Epoch: 266
2023-05-08 23:53:00,067 kenma_eng INFO Train Epoch: 267 [28%]
2023-05-08 23:53:00,069 kenma_eng INFO [10400, 9.67294694853279e-05]
2023-05-08 23:53:00,069 kenma_eng INFO loss_disc=2.086, loss_gen=3.871, loss_fm=16.090,loss_mel=20.210, loss_kl=0.717
2023-05-08 23:53:02,746 kenma_eng INFO ====> Epoch: 267
2023-05-08 23:53:10,712 kenma_eng INFO ====> Epoch: 268
2023-05-08 23:53:18,698 kenma_eng INFO ====> Epoch: 269
2023-05-08 23:53:26,714 kenma_eng INFO Saving model and optimizer state at epoch 270 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:53:27,163 kenma_eng INFO Saving model and optimizer state at epoch 270 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:53:27,755 kenma_eng INFO ====> Epoch: 270
2023-05-08 23:53:35,701 kenma_eng INFO ====> Epoch: 271
2023-05-08 23:53:42,249 kenma_eng INFO Train Epoch: 272 [92%]
2023-05-08 23:53:42,252 kenma_eng INFO [10600, 9.666902867899003e-05]
2023-05-08 23:53:42,252 kenma_eng INFO loss_disc=2.008, loss_gen=3.914, loss_fm=15.602,loss_mel=20.115, loss_kl=1.201
2023-05-08 23:53:43,926 kenma_eng INFO ====> Epoch: 272
2023-05-08 23:53:51,876 kenma_eng INFO ====> Epoch: 273
2023-05-08 23:53:59,874 kenma_eng INFO ====> Epoch: 274
2023-05-08 23:54:07,851 kenma_eng INFO Saving model and optimizer state at epoch 275 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:54:08,295 kenma_eng INFO Saving model and optimizer state at epoch 275 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:54:08,887 kenma_eng INFO ====> Epoch: 275
2023-05-08 23:54:16,861 kenma_eng INFO ====> Epoch: 276
2023-05-08 23:54:24,437 kenma_eng INFO Train Epoch: 277 [64%]
2023-05-08 23:54:24,439 kenma_eng INFO [10800, 9.660862563871342e-05]
2023-05-08 23:54:24,439 kenma_eng INFO loss_disc=2.096, loss_gen=4.270, loss_fm=14.102,loss_mel=18.081, loss_kl=1.553
2023-05-08 23:54:25,127 kenma_eng INFO ====> Epoch: 277
2023-05-08 23:54:33,046 kenma_eng INFO ====> Epoch: 278
2023-05-08 23:54:41,030 kenma_eng INFO ====> Epoch: 279
2023-05-08 23:54:49,015 kenma_eng INFO Saving model and optimizer state at epoch 280 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:54:49,461 kenma_eng INFO Saving model and optimizer state at epoch 280 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:54:50,051 kenma_eng INFO ====> Epoch: 280
2023-05-08 23:54:58,029 kenma_eng INFO ====> Epoch: 281
2023-05-08 23:55:06,018 kenma_eng INFO ====> Epoch: 282
2023-05-08 23:55:06,622 kenma_eng INFO Train Epoch: 283 [64%]
2023-05-08 23:55:06,624 kenma_eng INFO [11000, 9.653619180835758e-05]
2023-05-08 23:55:06,624 kenma_eng INFO loss_disc=1.838, loss_gen=3.801, loss_fm=16.227,loss_mel=18.351, loss_kl=0.419
2023-05-08 23:55:14,199 kenma_eng INFO ====> Epoch: 283
2023-05-08 23:55:22,185 kenma_eng INFO ====> Epoch: 284
2023-05-08 23:55:30,180 kenma_eng INFO Saving model and optimizer state at epoch 285 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:55:30,624 kenma_eng INFO Saving model and optimizer state at epoch 285 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:55:31,216 kenma_eng INFO ====> Epoch: 285
2023-05-08 23:55:39,205 kenma_eng INFO ====> Epoch: 286
2023-05-08 23:55:47,177 kenma_eng INFO ====> Epoch: 287
2023-05-08 23:55:48,811 kenma_eng INFO Train Epoch: 288 [36%]
2023-05-08 23:55:48,813 kenma_eng INFO [11200, 9.647587177037196e-05]
2023-05-08 23:55:48,813 kenma_eng INFO loss_disc=2.106, loss_gen=3.536, loss_fm=15.607,loss_mel=18.624, loss_kl=0.811
2023-05-08 23:55:55,373 kenma_eng INFO ====> Epoch: 288
2023-05-08 23:56:03,350 kenma_eng INFO ====> Epoch: 289
2023-05-08 23:56:11,351 kenma_eng INFO Saving model and optimizer state at epoch 290 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:56:11,802 kenma_eng INFO Saving model and optimizer state at epoch 290 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:56:12,395 kenma_eng INFO ====> Epoch: 290
2023-05-08 23:56:20,350 kenma_eng INFO ====> Epoch: 291
2023-05-08 23:56:28,342 kenma_eng INFO ====> Epoch: 292
2023-05-08 23:56:30,998 kenma_eng INFO Train Epoch: 293 [59%]
2023-05-08 23:56:31,000 kenma_eng INFO [11400, 9.641558942298625e-05]
2023-05-08 23:56:31,000 kenma_eng INFO loss_disc=2.425, loss_gen=3.517, loss_fm=10.334,loss_mel=19.468, loss_kl=0.564
2023-05-08 23:56:36,531 kenma_eng INFO ====> Epoch: 293
2023-05-08 23:56:44,531 kenma_eng INFO ====> Epoch: 294
2023-05-08 23:56:52,503 kenma_eng INFO Saving model and optimizer state at epoch 295 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:56:52,954 kenma_eng INFO Saving model and optimizer state at epoch 295 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:56:53,544 kenma_eng INFO ====> Epoch: 295
2023-05-08 23:57:01,683 kenma_eng INFO ====> Epoch: 296
2023-05-08 23:57:10,165 kenma_eng INFO ====> Epoch: 297
2023-05-08 23:57:14,053 kenma_eng INFO Train Epoch: 298 [18%]
2023-05-08 23:57:14,057 kenma_eng INFO [11600, 9.635534474264972e-05]
2023-05-08 23:57:14,057 kenma_eng INFO loss_disc=2.473, loss_gen=3.393, loss_fm=10.933,loss_mel=18.952, loss_kl=1.169
2023-05-08 23:57:18,589 kenma_eng INFO ====> Epoch: 298
2023-05-08 23:57:26,500 kenma_eng INFO ====> Epoch: 299
2023-05-08 23:57:34,487 kenma_eng INFO Saving model and optimizer state at epoch 300 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:57:34,943 kenma_eng INFO Saving model and optimizer state at epoch 300 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:57:35,537 kenma_eng INFO ====> Epoch: 300
2023-05-08 23:57:35,538 kenma_eng INFO Training is done. The program is closed.
2023-05-08 23:57:35,596 kenma_eng INFO saving final ckpt:Success.
|