File size: 47,270 Bytes
47bd6f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
2023-05-08 23:16:29,434	kenma_eng	INFO	{'train': {'log_interval': 200, 'seed': 1234, 'epochs': 20000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 4, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 12800, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'max_wav_value': 32768.0, 'sampling_rate': 40000, 'filter_length': 2048, 'hop_length': 400, 'win_length': 2048, 'n_mel_channels': 125, 'mel_fmin': 0.0, 'mel_fmax': None, 'training_files': './logs/kenma_eng/filelist.txt'}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 10, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'use_spectral_norm': False, 'gin_channels': 256, 'spk_embed_dim': 109}, 'model_dir': './logs/kenma_eng', 'experiment_dir': './logs/kenma_eng', 'save_every_epoch': 5, 'name': 'kenma_eng', 'total_epoch': 300, 'pretrainG': 'pretrained/G40k.pth', 'pretrainD': 'pretrained/D40k.pth', 'gpus': '0', 'sample_rate': '40k', 'if_f0': 0, 'if_latest': 1, 'if_cache_data_in_gpu': 1}
2023-05-08 23:16:29,434	kenma_eng	WARNING	/home/parappa/Retrieval-based-Voice-Conversion-WebUI/train is not a git repository, therefore hash value comparison will be ignored.
2023-05-08 23:16:30,257	kenma_eng	INFO	loaded pretrained pretrained/G40k.pth pretrained/D40k.pth
2023-05-08 23:16:33,875	kenma_eng	INFO	Train Epoch: 1 [0%]
2023-05-08 23:16:33,875	kenma_eng	INFO	[0, 0.0001]
2023-05-08 23:16:33,875	kenma_eng	INFO	loss_disc=2.865, loss_gen=2.661, loss_fm=12.986,loss_mel=27.710, loss_kl=5.000
2023-05-08 23:16:43,850	kenma_eng	INFO	====> Epoch: 1
2023-05-08 23:16:51,519	kenma_eng	INFO	====> Epoch: 2
2023-05-08 23:16:59,170	kenma_eng	INFO	====> Epoch: 3
2023-05-08 23:17:06,842	kenma_eng	INFO	====> Epoch: 4
2023-05-08 23:17:14,520	kenma_eng	INFO	Saving model and optimizer state at epoch 5 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:17:14,928	kenma_eng	INFO	Saving model and optimizer state at epoch 5 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:17:15,398	kenma_eng	INFO	====> Epoch: 5
2023-05-08 23:17:16,579	kenma_eng	INFO	Train Epoch: 6 [64%]
2023-05-08 23:17:16,581	kenma_eng	INFO	[200, 9.993751562304699e-05]
2023-05-08 23:17:16,581	kenma_eng	INFO	loss_disc=3.256, loss_gen=2.900, loss_fm=14.750,loss_mel=22.623, loss_kl=2.727
2023-05-08 23:17:23,363	kenma_eng	INFO	====> Epoch: 6
2023-05-08 23:17:31,038	kenma_eng	INFO	====> Epoch: 7
2023-05-08 23:17:38,720	kenma_eng	INFO	====> Epoch: 8
2023-05-08 23:17:46,403	kenma_eng	INFO	====> Epoch: 9
2023-05-08 23:17:54,083	kenma_eng	INFO	Saving model and optimizer state at epoch 10 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:17:54,588	kenma_eng	INFO	Saving model and optimizer state at epoch 10 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:17:55,221	kenma_eng	INFO	====> Epoch: 10
2023-05-08 23:17:57,412	kenma_eng	INFO	Train Epoch: 11 [87%]
2023-05-08 23:17:57,414	kenma_eng	INFO	[400, 9.987507028906759e-05]
2023-05-08 23:17:57,414	kenma_eng	INFO	loss_disc=2.973, loss_gen=2.690, loss_fm=9.204,loss_mel=17.433, loss_kl=1.308
2023-05-08 23:18:03,121	kenma_eng	INFO	====> Epoch: 11
2023-05-08 23:18:10,833	kenma_eng	INFO	====> Epoch: 12
2023-05-08 23:18:18,570	kenma_eng	INFO	====> Epoch: 13
2023-05-08 23:18:26,316	kenma_eng	INFO	====> Epoch: 14
2023-05-08 23:18:34,038	kenma_eng	INFO	Saving model and optimizer state at epoch 15 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:18:34,479	kenma_eng	INFO	Saving model and optimizer state at epoch 15 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:18:35,055	kenma_eng	INFO	====> Epoch: 15
2023-05-08 23:18:38,225	kenma_eng	INFO	Train Epoch: 16 [64%]
2023-05-08 23:18:38,227	kenma_eng	INFO	[600, 9.981266397366609e-05]
2023-05-08 23:18:38,233	kenma_eng	INFO	loss_disc=2.721, loss_gen=3.351, loss_fm=12.137,loss_mel=21.595, loss_kl=2.537
2023-05-08 23:18:43,061	kenma_eng	INFO	====> Epoch: 16
2023-05-08 23:18:50,809	kenma_eng	INFO	====> Epoch: 17
2023-05-08 23:18:58,553	kenma_eng	INFO	====> Epoch: 18
2023-05-08 23:19:06,305	kenma_eng	INFO	====> Epoch: 19
2023-05-08 23:19:14,071	kenma_eng	INFO	Saving model and optimizer state at epoch 20 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:19:14,509	kenma_eng	INFO	Saving model and optimizer state at epoch 20 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:19:15,088	kenma_eng	INFO	====> Epoch: 20
2023-05-08 23:19:19,247	kenma_eng	INFO	Train Epoch: 21 [3%]
2023-05-08 23:19:19,249	kenma_eng	INFO	[800, 9.975029665246193e-05]
2023-05-08 23:19:19,255	kenma_eng	INFO	loss_disc=2.381, loss_gen=3.654, loss_fm=16.410,loss_mel=22.015, loss_kl=1.045
2023-05-08 23:19:23,079	kenma_eng	INFO	====> Epoch: 21
2023-05-08 23:19:30,836	kenma_eng	INFO	====> Epoch: 22
2023-05-08 23:19:38,610	kenma_eng	INFO	====> Epoch: 23
2023-05-08 23:19:46,392	kenma_eng	INFO	====> Epoch: 24
2023-05-08 23:19:54,174	kenma_eng	INFO	Saving model and optimizer state at epoch 25 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:19:54,687	kenma_eng	INFO	Saving model and optimizer state at epoch 25 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:19:55,263	kenma_eng	INFO	====> Epoch: 25
2023-05-08 23:20:00,421	kenma_eng	INFO	Train Epoch: 26 [79%]
2023-05-08 23:20:00,423	kenma_eng	INFO	[1000, 9.968796830108985e-05]
2023-05-08 23:20:00,424	kenma_eng	INFO	loss_disc=2.815, loss_gen=2.932, loss_fm=13.485,loss_mel=22.573, loss_kl=2.084
2023-05-08 23:20:03,231	kenma_eng	INFO	====> Epoch: 26
2023-05-08 23:20:11,057	kenma_eng	INFO	====> Epoch: 27
2023-05-08 23:20:18,894	kenma_eng	INFO	====> Epoch: 28
2023-05-08 23:20:26,705	kenma_eng	INFO	====> Epoch: 29
2023-05-08 23:20:34,555	kenma_eng	INFO	Saving model and optimizer state at epoch 30 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:20:34,998	kenma_eng	INFO	Saving model and optimizer state at epoch 30 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:20:35,579	kenma_eng	INFO	====> Epoch: 30
2023-05-08 23:20:41,757	kenma_eng	INFO	Train Epoch: 31 [95%]
2023-05-08 23:20:41,759	kenma_eng	INFO	[1200, 9.962567889519979e-05]
2023-05-08 23:20:41,759	kenma_eng	INFO	loss_disc=2.354, loss_gen=3.439, loss_fm=14.556,loss_mel=21.892, loss_kl=2.104
2023-05-08 23:20:43,557	kenma_eng	INFO	====> Epoch: 31
2023-05-08 23:20:51,393	kenma_eng	INFO	====> Epoch: 32
2023-05-08 23:20:59,229	kenma_eng	INFO	====> Epoch: 33
2023-05-08 23:21:07,063	kenma_eng	INFO	====> Epoch: 34
2023-05-08 23:21:14,902	kenma_eng	INFO	Saving model and optimizer state at epoch 35 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:21:15,345	kenma_eng	INFO	Saving model and optimizer state at epoch 35 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:21:16,004	kenma_eng	INFO	====> Epoch: 35
2023-05-08 23:21:23,238	kenma_eng	INFO	Train Epoch: 36 [90%]
2023-05-08 23:21:23,240	kenma_eng	INFO	[1400, 9.956342841045691e-05]
2023-05-08 23:21:23,240	kenma_eng	INFO	loss_disc=2.838, loss_gen=3.338, loss_fm=11.191,loss_mel=22.750, loss_kl=1.916
2023-05-08 23:21:24,048	kenma_eng	INFO	====> Epoch: 36
2023-05-08 23:21:31,856	kenma_eng	INFO	====> Epoch: 37
2023-05-08 23:21:39,717	kenma_eng	INFO	====> Epoch: 38
2023-05-08 23:21:47,559	kenma_eng	INFO	====> Epoch: 39
2023-05-08 23:21:55,380	kenma_eng	INFO	Saving model and optimizer state at epoch 40 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:21:55,826	kenma_eng	INFO	Saving model and optimizer state at epoch 40 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:21:56,409	kenma_eng	INFO	====> Epoch: 40
2023-05-08 23:22:04,246	kenma_eng	INFO	====> Epoch: 41
2023-05-08 23:22:04,648	kenma_eng	INFO	Train Epoch: 42 [77%]
2023-05-08 23:22:04,650	kenma_eng	INFO	[1600, 9.948877917043875e-05]
2023-05-08 23:22:04,650	kenma_eng	INFO	loss_disc=2.622, loss_gen=3.326, loss_fm=13.962,loss_mel=21.530, loss_kl=1.679
2023-05-08 23:22:12,307	kenma_eng	INFO	====> Epoch: 42
2023-05-08 23:22:20,153	kenma_eng	INFO	====> Epoch: 43
2023-05-08 23:22:27,975	kenma_eng	INFO	====> Epoch: 44
2023-05-08 23:22:35,867	kenma_eng	INFO	Saving model and optimizer state at epoch 45 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:22:36,326	kenma_eng	INFO	Saving model and optimizer state at epoch 45 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:22:36,907	kenma_eng	INFO	====> Epoch: 45
2023-05-08 23:22:44,804	kenma_eng	INFO	====> Epoch: 46
2023-05-08 23:22:46,210	kenma_eng	INFO	Train Epoch: 47 [41%]
2023-05-08 23:22:46,212	kenma_eng	INFO	[1800, 9.942661422663591e-05]
2023-05-08 23:22:46,212	kenma_eng	INFO	loss_disc=2.595, loss_gen=3.967, loss_fm=11.861,loss_mel=20.913, loss_kl=1.444
2023-05-08 23:22:52,914	kenma_eng	INFO	====> Epoch: 47
2023-05-08 23:23:00,743	kenma_eng	INFO	====> Epoch: 48
2023-05-08 23:23:08,617	kenma_eng	INFO	====> Epoch: 49
2023-05-08 23:23:16,504	kenma_eng	INFO	Saving model and optimizer state at epoch 50 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:23:16,945	kenma_eng	INFO	Saving model and optimizer state at epoch 50 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:23:17,525	kenma_eng	INFO	====> Epoch: 50
2023-05-08 23:23:25,389	kenma_eng	INFO	====> Epoch: 51
2023-05-08 23:23:27,806	kenma_eng	INFO	Train Epoch: 52 [41%]
2023-05-08 23:23:27,809	kenma_eng	INFO	[2000, 9.936448812621091e-05]
2023-05-08 23:23:27,809	kenma_eng	INFO	loss_disc=2.828, loss_gen=3.041, loss_fm=12.945,loss_mel=22.283, loss_kl=2.018
2023-05-08 23:23:33,516	kenma_eng	INFO	====> Epoch: 52
2023-05-08 23:23:41,487	kenma_eng	INFO	====> Epoch: 53
2023-05-08 23:23:49,359	kenma_eng	INFO	====> Epoch: 54
2023-05-08 23:23:57,267	kenma_eng	INFO	Saving model and optimizer state at epoch 55 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:23:57,714	kenma_eng	INFO	Saving model and optimizer state at epoch 55 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:23:58,294	kenma_eng	INFO	====> Epoch: 55
2023-05-08 23:24:06,121	kenma_eng	INFO	====> Epoch: 56
2023-05-08 23:24:09,605	kenma_eng	INFO	Train Epoch: 57 [38%]
2023-05-08 23:24:09,607	kenma_eng	INFO	[2200, 9.930240084489267e-05]
2023-05-08 23:24:09,607	kenma_eng	INFO	loss_disc=2.341, loss_gen=3.577, loss_fm=14.804,loss_mel=21.295, loss_kl=0.870
2023-05-08 23:24:14,264	kenma_eng	INFO	====> Epoch: 57
2023-05-08 23:24:22,253	kenma_eng	INFO	====> Epoch: 58
2023-05-08 23:24:30,207	kenma_eng	INFO	====> Epoch: 59
2023-05-08 23:24:38,030	kenma_eng	INFO	Saving model and optimizer state at epoch 60 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:24:38,477	kenma_eng	INFO	Saving model and optimizer state at epoch 60 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:24:39,064	kenma_eng	INFO	====> Epoch: 60
2023-05-08 23:24:47,032	kenma_eng	INFO	====> Epoch: 61
2023-05-08 23:24:51,555	kenma_eng	INFO	Train Epoch: 62 [33%]
2023-05-08 23:24:51,557	kenma_eng	INFO	[2400, 9.924035235842533e-05]
2023-05-08 23:24:51,557	kenma_eng	INFO	loss_disc=2.740, loss_gen=3.562, loss_fm=12.825,loss_mel=20.778, loss_kl=1.276
2023-05-08 23:24:55,228	kenma_eng	INFO	====> Epoch: 62
2023-05-08 23:25:03,207	kenma_eng	INFO	====> Epoch: 63
2023-05-08 23:25:11,196	kenma_eng	INFO	====> Epoch: 64
2023-05-08 23:25:19,180	kenma_eng	INFO	Saving model and optimizer state at epoch 65 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:25:19,694	kenma_eng	INFO	Saving model and optimizer state at epoch 65 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:25:20,280	kenma_eng	INFO	====> Epoch: 65
2023-05-08 23:25:28,192	kenma_eng	INFO	====> Epoch: 66
2023-05-08 23:25:33,727	kenma_eng	INFO	Train Epoch: 67 [0%]
2023-05-08 23:25:33,729	kenma_eng	INFO	[2600, 9.917834264256819e-05]
2023-05-08 23:25:33,729	kenma_eng	INFO	loss_disc=2.601, loss_gen=3.035, loss_fm=10.245,loss_mel=21.210, loss_kl=2.084
2023-05-08 23:25:36,402	kenma_eng	INFO	====> Epoch: 67
2023-05-08 23:25:44,389	kenma_eng	INFO	====> Epoch: 68
2023-05-08 23:25:52,373	kenma_eng	INFO	====> Epoch: 69
2023-05-08 23:26:00,358	kenma_eng	INFO	Saving model and optimizer state at epoch 70 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:26:00,805	kenma_eng	INFO	Saving model and optimizer state at epoch 70 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:26:01,399	kenma_eng	INFO	====> Epoch: 70
2023-05-08 23:26:09,359	kenma_eng	INFO	====> Epoch: 71
2023-05-08 23:26:15,915	kenma_eng	INFO	Train Epoch: 72 [8%]
2023-05-08 23:26:15,917	kenma_eng	INFO	[2800, 9.911637167309565e-05]
2023-05-08 23:26:15,917	kenma_eng	INFO	loss_disc=2.281, loss_gen=3.312, loss_fm=16.278,loss_mel=20.006, loss_kl=0.428
2023-05-08 23:26:17,543	kenma_eng	INFO	====> Epoch: 72
2023-05-08 23:26:25,536	kenma_eng	INFO	====> Epoch: 73
2023-05-08 23:26:33,529	kenma_eng	INFO	====> Epoch: 74
2023-05-08 23:26:41,518	kenma_eng	INFO	Saving model and optimizer state at epoch 75 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:26:42,031	kenma_eng	INFO	Saving model and optimizer state at epoch 75 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:26:42,634	kenma_eng	INFO	====> Epoch: 75
2023-05-08 23:26:50,526	kenma_eng	INFO	====> Epoch: 76
2023-05-08 23:26:58,105	kenma_eng	INFO	Train Epoch: 77 [56%]
2023-05-08 23:26:58,107	kenma_eng	INFO	[3000, 9.905443942579728e-05]
2023-05-08 23:26:58,107	kenma_eng	INFO	loss_disc=2.649, loss_gen=3.208, loss_fm=13.554,loss_mel=20.792, loss_kl=1.335
2023-05-08 23:26:58,734	kenma_eng	INFO	====> Epoch: 77
2023-05-08 23:27:06,700	kenma_eng	INFO	====> Epoch: 78
2023-05-08 23:27:14,694	kenma_eng	INFO	====> Epoch: 79
2023-05-08 23:27:22,675	kenma_eng	INFO	Saving model and optimizer state at epoch 80 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:27:23,121	kenma_eng	INFO	Saving model and optimizer state at epoch 80 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:27:23,707	kenma_eng	INFO	====> Epoch: 80
2023-05-08 23:27:31,694	kenma_eng	INFO	====> Epoch: 81
2023-05-08 23:27:39,679	kenma_eng	INFO	====> Epoch: 82
2023-05-08 23:27:40,296	kenma_eng	INFO	Train Epoch: 83 [90%]
2023-05-08 23:27:40,297	kenma_eng	INFO	[3200, 9.89801718082432e-05]
2023-05-08 23:27:40,298	kenma_eng	INFO	loss_disc=2.784, loss_gen=3.327, loss_fm=13.070,loss_mel=20.826, loss_kl=1.661
2023-05-08 23:27:47,887	kenma_eng	INFO	====> Epoch: 83
2023-05-08 23:27:55,860	kenma_eng	INFO	====> Epoch: 84
2023-05-08 23:28:03,843	kenma_eng	INFO	Saving model and optimizer state at epoch 85 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:28:04,357	kenma_eng	INFO	Saving model and optimizer state at epoch 85 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:28:04,947	kenma_eng	INFO	====> Epoch: 85
2023-05-08 23:28:12,858	kenma_eng	INFO	====> Epoch: 86
2023-05-08 23:28:20,842	kenma_eng	INFO	====> Epoch: 87
2023-05-08 23:28:22,477	kenma_eng	INFO	Train Epoch: 88 [69%]
2023-05-08 23:28:22,478	kenma_eng	INFO	[3400, 9.891832466458178e-05]
2023-05-08 23:28:22,478	kenma_eng	INFO	loss_disc=2.293, loss_gen=3.493, loss_fm=13.095,loss_mel=20.620, loss_kl=1.292
2023-05-08 23:28:29,030	kenma_eng	INFO	====> Epoch: 88
2023-05-08 23:28:37,020	kenma_eng	INFO	====> Epoch: 89
2023-05-08 23:28:45,012	kenma_eng	INFO	Saving model and optimizer state at epoch 90 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:28:45,460	kenma_eng	INFO	Saving model and optimizer state at epoch 90 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:28:46,058	kenma_eng	INFO	====> Epoch: 90
2023-05-08 23:28:54,021	kenma_eng	INFO	====> Epoch: 91
2023-05-08 23:29:02,004	kenma_eng	INFO	====> Epoch: 92
2023-05-08 23:29:04,663	kenma_eng	INFO	Train Epoch: 93 [54%]
2023-05-08 23:29:04,665	kenma_eng	INFO	[3600, 9.885651616572276e-05]
2023-05-08 23:29:04,665	kenma_eng	INFO	loss_disc=2.701, loss_gen=3.218, loss_fm=14.823,loss_mel=21.348, loss_kl=1.524
2023-05-08 23:29:10,207	kenma_eng	INFO	====> Epoch: 93
2023-05-08 23:29:18,185	kenma_eng	INFO	====> Epoch: 94
2023-05-08 23:29:26,168	kenma_eng	INFO	Saving model and optimizer state at epoch 95 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:29:26,687	kenma_eng	INFO	Saving model and optimizer state at epoch 95 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:29:27,286	kenma_eng	INFO	====> Epoch: 95
2023-05-08 23:29:35,168	kenma_eng	INFO	====> Epoch: 96
2023-05-08 23:29:43,162	kenma_eng	INFO	====> Epoch: 97
2023-05-08 23:29:46,855	kenma_eng	INFO	Train Epoch: 98 [77%]
2023-05-08 23:29:46,857	kenma_eng	INFO	[3800, 9.879474628751914e-05]
2023-05-08 23:29:46,857	kenma_eng	INFO	loss_disc=2.413, loss_gen=3.459, loss_fm=11.920,loss_mel=20.858, loss_kl=1.785
2023-05-08 23:29:51,362	kenma_eng	INFO	====> Epoch: 98
2023-05-08 23:29:59,345	kenma_eng	INFO	====> Epoch: 99
2023-05-08 23:30:07,336	kenma_eng	INFO	Saving model and optimizer state at epoch 100 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:30:07,786	kenma_eng	INFO	Saving model and optimizer state at epoch 100 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:30:08,374	kenma_eng	INFO	====> Epoch: 100
2023-05-08 23:30:16,340	kenma_eng	INFO	====> Epoch: 101
2023-05-08 23:30:24,332	kenma_eng	INFO	====> Epoch: 102
2023-05-08 23:30:29,044	kenma_eng	INFO	Train Epoch: 103 [36%]
2023-05-08 23:30:29,046	kenma_eng	INFO	[4000, 9.873301500583906e-05]
2023-05-08 23:30:29,046	kenma_eng	INFO	loss_disc=2.663, loss_gen=3.403, loss_fm=14.288,loss_mel=20.431, loss_kl=1.184
2023-05-08 23:30:32,543	kenma_eng	INFO	====> Epoch: 103
2023-05-08 23:30:40,508	kenma_eng	INFO	====> Epoch: 104
2023-05-08 23:30:48,502	kenma_eng	INFO	Saving model and optimizer state at epoch 105 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:30:49,017	kenma_eng	INFO	Saving model and optimizer state at epoch 105 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:30:49,617	kenma_eng	INFO	====> Epoch: 105
2023-05-08 23:30:57,507	kenma_eng	INFO	====> Epoch: 106
2023-05-08 23:31:05,520	kenma_eng	INFO	====> Epoch: 107
2023-05-08 23:31:11,235	kenma_eng	INFO	Train Epoch: 108 [3%]
2023-05-08 23:31:11,237	kenma_eng	INFO	[4200, 9.867132229656573e-05]
2023-05-08 23:31:11,237	kenma_eng	INFO	loss_disc=1.916, loss_gen=3.703, loss_fm=16.316,loss_mel=18.907, loss_kl=1.553
2023-05-08 23:31:13,688	kenma_eng	INFO	====> Epoch: 108
2023-05-08 23:31:21,677	kenma_eng	INFO	====> Epoch: 109
2023-05-08 23:31:29,658	kenma_eng	INFO	Saving model and optimizer state at epoch 110 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:31:30,174	kenma_eng	INFO	Saving model and optimizer state at epoch 110 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:31:30,771	kenma_eng	INFO	====> Epoch: 110
2023-05-08 23:31:38,672	kenma_eng	INFO	====> Epoch: 111
2023-05-08 23:31:46,661	kenma_eng	INFO	====> Epoch: 112
2023-05-08 23:31:53,418	kenma_eng	INFO	Train Epoch: 113 [10%]
2023-05-08 23:31:53,420	kenma_eng	INFO	[4400, 9.86096681355974e-05]
2023-05-08 23:31:53,420	kenma_eng	INFO	loss_disc=1.807, loss_gen=4.457, loss_fm=15.467,loss_mel=19.595, loss_kl=1.601
2023-05-08 23:31:54,848	kenma_eng	INFO	====> Epoch: 113
2023-05-08 23:32:02,841	kenma_eng	INFO	====> Epoch: 114
2023-05-08 23:32:10,823	kenma_eng	INFO	Saving model and optimizer state at epoch 115 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:32:11,338	kenma_eng	INFO	Saving model and optimizer state at epoch 115 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:32:11,933	kenma_eng	INFO	====> Epoch: 115
2023-05-08 23:32:19,838	kenma_eng	INFO	====> Epoch: 116
2023-05-08 23:32:27,835	kenma_eng	INFO	====> Epoch: 117
2023-05-08 23:32:35,603	kenma_eng	INFO	Train Epoch: 118 [46%]
2023-05-08 23:32:35,605	kenma_eng	INFO	[4600, 9.854805249884741e-05]
2023-05-08 23:32:35,605	kenma_eng	INFO	loss_disc=1.976, loss_gen=4.144, loss_fm=14.899,loss_mel=20.415, loss_kl=0.905
2023-05-08 23:32:36,017	kenma_eng	INFO	====> Epoch: 118
2023-05-08 23:32:44,002	kenma_eng	INFO	====> Epoch: 119
2023-05-08 23:32:51,993	kenma_eng	INFO	Saving model and optimizer state at epoch 120 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:32:52,439	kenma_eng	INFO	Saving model and optimizer state at epoch 120 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:32:53,035	kenma_eng	INFO	====> Epoch: 120
2023-05-08 23:33:01,001	kenma_eng	INFO	====> Epoch: 121
2023-05-08 23:33:08,988	kenma_eng	INFO	====> Epoch: 122
2023-05-08 23:33:16,979	kenma_eng	INFO	====> Epoch: 123
2023-05-08 23:33:17,795	kenma_eng	INFO	Train Epoch: 124 [15%]
2023-05-08 23:33:17,797	kenma_eng	INFO	[4800, 9.847416455282387e-05]
2023-05-08 23:33:17,797	kenma_eng	INFO	loss_disc=2.059, loss_gen=3.385, loss_fm=13.991,loss_mel=20.368, loss_kl=1.581
2023-05-08 23:33:25,166	kenma_eng	INFO	====> Epoch: 124
2023-05-08 23:33:33,154	kenma_eng	INFO	Saving model and optimizer state at epoch 125 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:33:33,602	kenma_eng	INFO	Saving model and optimizer state at epoch 125 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:33:34,191	kenma_eng	INFO	====> Epoch: 125
2023-05-08 23:33:42,168	kenma_eng	INFO	====> Epoch: 126
2023-05-08 23:33:50,149	kenma_eng	INFO	====> Epoch: 127
2023-05-08 23:33:58,139	kenma_eng	INFO	====> Epoch: 128
2023-05-08 23:33:59,983	kenma_eng	INFO	Train Epoch: 129 [21%]
2023-05-08 23:33:59,985	kenma_eng	INFO	[5000, 9.841263358464336e-05]
2023-05-08 23:33:59,985	kenma_eng	INFO	loss_disc=2.190, loss_gen=4.590, loss_fm=14.053,loss_mel=20.084, loss_kl=1.679
2023-05-08 23:34:06,332	kenma_eng	INFO	====> Epoch: 129
2023-05-08 23:34:14,316	kenma_eng	INFO	Saving model and optimizer state at epoch 130 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:34:14,754	kenma_eng	INFO	Saving model and optimizer state at epoch 130 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:34:15,340	kenma_eng	INFO	====> Epoch: 130
2023-05-08 23:34:23,386	kenma_eng	INFO	====> Epoch: 131
2023-05-08 23:34:31,310	kenma_eng	INFO	====> Epoch: 132
2023-05-08 23:34:39,298	kenma_eng	INFO	====> Epoch: 133
2023-05-08 23:34:42,164	kenma_eng	INFO	Train Epoch: 134 [23%]
2023-05-08 23:34:42,166	kenma_eng	INFO	[5200, 9.835114106370493e-05]
2023-05-08 23:34:42,166	kenma_eng	INFO	loss_disc=2.070, loss_gen=3.735, loss_fm=13.641,loss_mel=19.528, loss_kl=1.520
2023-05-08 23:34:47,491	kenma_eng	INFO	====> Epoch: 134
2023-05-08 23:34:55,475	kenma_eng	INFO	Saving model and optimizer state at epoch 135 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:34:55,917	kenma_eng	INFO	Saving model and optimizer state at epoch 135 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:34:56,507	kenma_eng	INFO	====> Epoch: 135
2023-05-08 23:35:04,564	kenma_eng	INFO	====> Epoch: 136
2023-05-08 23:35:12,480	kenma_eng	INFO	====> Epoch: 137
2023-05-08 23:35:20,467	kenma_eng	INFO	====> Epoch: 138
2023-05-08 23:35:24,388	kenma_eng	INFO	Train Epoch: 139 [23%]
2023-05-08 23:35:24,390	kenma_eng	INFO	[5400, 9.828968696598508e-05]
2023-05-08 23:35:24,390	kenma_eng	INFO	loss_disc=2.168, loss_gen=3.409, loss_fm=14.586,loss_mel=18.876, loss_kl=0.873
2023-05-08 23:35:28,651	kenma_eng	INFO	====> Epoch: 139
2023-05-08 23:35:36,641	kenma_eng	INFO	Saving model and optimizer state at epoch 140 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:35:37,082	kenma_eng	INFO	Saving model and optimizer state at epoch 140 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:35:37,672	kenma_eng	INFO	====> Epoch: 140
2023-05-08 23:35:45,661	kenma_eng	INFO	====> Epoch: 141
2023-05-08 23:35:53,641	kenma_eng	INFO	====> Epoch: 142
2023-05-08 23:36:01,637	kenma_eng	INFO	====> Epoch: 143
2023-05-08 23:36:06,547	kenma_eng	INFO	Train Epoch: 144 [31%]
2023-05-08 23:36:06,549	kenma_eng	INFO	[5600, 9.822827126747529e-05]
2023-05-08 23:36:06,549	kenma_eng	INFO	loss_disc=1.980, loss_gen=3.789, loss_fm=14.169,loss_mel=19.720, loss_kl=0.746
2023-05-08 23:36:09,814	kenma_eng	INFO	====> Epoch: 144
2023-05-08 23:36:17,808	kenma_eng	INFO	Saving model and optimizer state at epoch 145 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:36:18,249	kenma_eng	INFO	Saving model and optimizer state at epoch 145 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:36:18,847	kenma_eng	INFO	====> Epoch: 145
2023-05-08 23:36:26,822	kenma_eng	INFO	====> Epoch: 146
2023-05-08 23:36:34,812	kenma_eng	INFO	====> Epoch: 147
2023-05-08 23:36:42,795	kenma_eng	INFO	====> Epoch: 148
2023-05-08 23:36:48,738	kenma_eng	INFO	Train Epoch: 149 [28%]
2023-05-08 23:36:48,740	kenma_eng	INFO	[5800, 9.816689394418209e-05]
2023-05-08 23:36:48,740	kenma_eng	INFO	loss_disc=1.871, loss_gen=4.337, loss_fm=16.396,loss_mel=21.222, loss_kl=1.508
2023-05-08 23:36:50,973	kenma_eng	INFO	====> Epoch: 149
2023-05-08 23:36:58,976	kenma_eng	INFO	Saving model and optimizer state at epoch 150 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:36:59,418	kenma_eng	INFO	Saving model and optimizer state at epoch 150 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:37:00,082	kenma_eng	INFO	====> Epoch: 150
2023-05-08 23:37:07,986	kenma_eng	INFO	====> Epoch: 151
2023-05-08 23:37:15,972	kenma_eng	INFO	====> Epoch: 152
2023-05-08 23:37:23,958	kenma_eng	INFO	====> Epoch: 153
2023-05-08 23:37:30,918	kenma_eng	INFO	Train Epoch: 154 [15%]
2023-05-08 23:37:30,920	kenma_eng	INFO	[6000, 9.810555497212693e-05]
2023-05-08 23:37:30,920	kenma_eng	INFO	loss_disc=2.035, loss_gen=3.760, loss_fm=14.298,loss_mel=19.946, loss_kl=0.859
2023-05-08 23:37:32,146	kenma_eng	INFO	====> Epoch: 154
2023-05-08 23:37:40,134	kenma_eng	INFO	Saving model and optimizer state at epoch 155 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:37:40,581	kenma_eng	INFO	Saving model and optimizer state at epoch 155 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:37:41,176	kenma_eng	INFO	====> Epoch: 155
2023-05-08 23:37:49,137	kenma_eng	INFO	====> Epoch: 156
2023-05-08 23:37:57,140	kenma_eng	INFO	====> Epoch: 157
2023-05-08 23:38:05,114	kenma_eng	INFO	====> Epoch: 158
2023-05-08 23:38:13,105	kenma_eng	INFO	Train Epoch: 159 [74%]
2023-05-08 23:38:13,107	kenma_eng	INFO	[6200, 9.804425432734629e-05]
2023-05-08 23:38:13,107	kenma_eng	INFO	loss_disc=2.096, loss_gen=3.140, loss_fm=12.766,loss_mel=18.966, loss_kl=1.000
2023-05-08 23:38:13,311	kenma_eng	INFO	====> Epoch: 159
2023-05-08 23:38:21,298	kenma_eng	INFO	Saving model and optimizer state at epoch 160 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:38:21,736	kenma_eng	INFO	Saving model and optimizer state at epoch 160 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:38:22,323	kenma_eng	INFO	====> Epoch: 160
2023-05-08 23:38:30,331	kenma_eng	INFO	====> Epoch: 161
2023-05-08 23:38:38,303	kenma_eng	INFO	====> Epoch: 162
2023-05-08 23:38:46,283	kenma_eng	INFO	====> Epoch: 163
2023-05-08 23:38:54,272	kenma_eng	INFO	====> Epoch: 164
2023-05-08 23:38:55,298	kenma_eng	INFO	Train Epoch: 165 [85%]
2023-05-08 23:38:55,300	kenma_eng	INFO	[6400, 9.797074411189339e-05]
2023-05-08 23:38:55,300	kenma_eng	INFO	loss_disc=2.262, loss_gen=3.843, loss_fm=14.559,loss_mel=18.460, loss_kl=2.523
2023-05-08 23:39:02,463	kenma_eng	INFO	Saving model and optimizer state at epoch 165 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:39:02,906	kenma_eng	INFO	Saving model and optimizer state at epoch 165 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:39:03,495	kenma_eng	INFO	====> Epoch: 165
2023-05-08 23:39:11,468	kenma_eng	INFO	====> Epoch: 166
2023-05-08 23:39:19,459	kenma_eng	INFO	====> Epoch: 167
2023-05-08 23:39:27,505	kenma_eng	INFO	====> Epoch: 168
2023-05-08 23:39:35,435	kenma_eng	INFO	====> Epoch: 169
2023-05-08 23:39:37,485	kenma_eng	INFO	Train Epoch: 170 [8%]
2023-05-08 23:39:37,487	kenma_eng	INFO	[6600, 9.790952770283884e-05]
2023-05-08 23:39:37,487	kenma_eng	INFO	loss_disc=1.409, loss_gen=5.128, loss_fm=18.067,loss_mel=19.149, loss_kl=1.303
2023-05-08 23:39:43,615	kenma_eng	INFO	Saving model and optimizer state at epoch 170 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:39:44,138	kenma_eng	INFO	Saving model and optimizer state at epoch 170 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:39:44,729	kenma_eng	INFO	====> Epoch: 170
2023-05-08 23:39:52,633	kenma_eng	INFO	====> Epoch: 171
2023-05-08 23:40:00,623	kenma_eng	INFO	====> Epoch: 172
2023-05-08 23:40:08,648	kenma_eng	INFO	====> Epoch: 173
2023-05-08 23:40:16,595	kenma_eng	INFO	====> Epoch: 174
2023-05-08 23:40:19,755	kenma_eng	INFO	Train Epoch: 175 [54%]
2023-05-08 23:40:19,756	kenma_eng	INFO	[6800, 9.784834954447608e-05]
2023-05-08 23:40:19,757	kenma_eng	INFO	loss_disc=2.381, loss_gen=3.203, loss_fm=11.890,loss_mel=21.385, loss_kl=0.766
2023-05-08 23:40:24,789	kenma_eng	INFO	Saving model and optimizer state at epoch 175 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:40:25,234	kenma_eng	INFO	Saving model and optimizer state at epoch 175 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:40:25,825	kenma_eng	INFO	====> Epoch: 175
2023-05-08 23:40:33,850	kenma_eng	INFO	====> Epoch: 176
2023-05-08 23:40:41,790	kenma_eng	INFO	====> Epoch: 177
2023-05-08 23:40:49,786	kenma_eng	INFO	====> Epoch: 178
2023-05-08 23:40:57,761	kenma_eng	INFO	====> Epoch: 179
2023-05-08 23:41:01,856	kenma_eng	INFO	Train Epoch: 180 [77%]
2023-05-08 23:41:01,858	kenma_eng	INFO	[7000, 9.778720961290439e-05]
2023-05-08 23:41:01,858	kenma_eng	INFO	loss_disc=2.326, loss_gen=3.396, loss_fm=11.155,loss_mel=19.969, loss_kl=0.927
2023-05-08 23:41:05,949	kenma_eng	INFO	Saving model and optimizer state at epoch 180 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:41:06,388	kenma_eng	INFO	Saving model and optimizer state at epoch 180 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:41:07,021	kenma_eng	INFO	====> Epoch: 180
2023-05-08 23:41:14,966	kenma_eng	INFO	====> Epoch: 181
2023-05-08 23:41:22,944	kenma_eng	INFO	====> Epoch: 182
2023-05-08 23:41:30,931	kenma_eng	INFO	====> Epoch: 183
2023-05-08 23:41:38,913	kenma_eng	INFO	====> Epoch: 184
2023-05-08 23:41:44,053	kenma_eng	INFO	Train Epoch: 185 [0%]
2023-05-08 23:41:44,055	kenma_eng	INFO	[7200, 9.772610788423802e-05]
2023-05-08 23:41:44,055	kenma_eng	INFO	loss_disc=2.721, loss_gen=3.359, loss_fm=11.969,loss_mel=20.092, loss_kl=1.441
2023-05-08 23:41:47,110	kenma_eng	INFO	Saving model and optimizer state at epoch 185 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:41:47,552	kenma_eng	INFO	Saving model and optimizer state at epoch 185 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:41:48,181	kenma_eng	INFO	====> Epoch: 185
2023-05-08 23:41:56,123	kenma_eng	INFO	====> Epoch: 186
2023-05-08 23:42:04,106	kenma_eng	INFO	====> Epoch: 187
2023-05-08 23:42:12,098	kenma_eng	INFO	====> Epoch: 188
2023-05-08 23:42:20,079	kenma_eng	INFO	====> Epoch: 189
2023-05-08 23:42:26,233	kenma_eng	INFO	Train Epoch: 190 [82%]
2023-05-08 23:42:26,235	kenma_eng	INFO	[7400, 9.766504433460612e-05]
2023-05-08 23:42:26,235	kenma_eng	INFO	loss_disc=2.463, loss_gen=3.253, loss_fm=12.856,loss_mel=20.189, loss_kl=1.383
2023-05-08 23:42:28,279	kenma_eng	INFO	Saving model and optimizer state at epoch 190 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:42:28,720	kenma_eng	INFO	Saving model and optimizer state at epoch 190 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:42:29,312	kenma_eng	INFO	====> Epoch: 190
2023-05-08 23:42:37,292	kenma_eng	INFO	====> Epoch: 191
2023-05-08 23:42:45,275	kenma_eng	INFO	====> Epoch: 192
2023-05-08 23:42:53,260	kenma_eng	INFO	====> Epoch: 193
2023-05-08 23:43:01,244	kenma_eng	INFO	====> Epoch: 194
2023-05-08 23:43:08,421	kenma_eng	INFO	Train Epoch: 195 [79%]
2023-05-08 23:43:08,423	kenma_eng	INFO	[7600, 9.760401894015275e-05]
2023-05-08 23:43:08,423	kenma_eng	INFO	loss_disc=2.311, loss_gen=3.909, loss_fm=15.471,loss_mel=20.243, loss_kl=0.945
2023-05-08 23:43:09,440	kenma_eng	INFO	Saving model and optimizer state at epoch 195 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:43:09,885	kenma_eng	INFO	Saving model and optimizer state at epoch 195 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:43:10,475	kenma_eng	INFO	====> Epoch: 195
2023-05-08 23:43:18,448	kenma_eng	INFO	====> Epoch: 196
2023-05-08 23:43:26,436	kenma_eng	INFO	====> Epoch: 197
2023-05-08 23:43:34,429	kenma_eng	INFO	====> Epoch: 198
2023-05-08 23:43:42,411	kenma_eng	INFO	====> Epoch: 199
2023-05-08 23:43:50,397	kenma_eng	INFO	Saving model and optimizer state at epoch 200 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:43:50,842	kenma_eng	INFO	Saving model and optimizer state at epoch 200 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:43:51,432	kenma_eng	INFO	====> Epoch: 200
2023-05-08 23:43:51,633	kenma_eng	INFO	Train Epoch: 201 [8%]
2023-05-08 23:43:51,635	kenma_eng	INFO	[7800, 9.753083879807726e-05]
2023-05-08 23:43:51,635	kenma_eng	INFO	loss_disc=1.920, loss_gen=3.953, loss_fm=12.891,loss_mel=18.567, loss_kl=0.669
2023-05-08 23:43:59,614	kenma_eng	INFO	====> Epoch: 201
2023-05-08 23:44:07,601	kenma_eng	INFO	====> Epoch: 202
2023-05-08 23:44:15,593	kenma_eng	INFO	====> Epoch: 203
2023-05-08 23:44:23,573	kenma_eng	INFO	====> Epoch: 204
2023-05-08 23:44:31,560	kenma_eng	INFO	Saving model and optimizer state at epoch 205 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:44:32,007	kenma_eng	INFO	Saving model and optimizer state at epoch 205 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:44:32,598	kenma_eng	INFO	====> Epoch: 205
2023-05-08 23:44:33,807	kenma_eng	INFO	Train Epoch: 206 [74%]
2023-05-08 23:44:33,809	kenma_eng	INFO	[8000, 9.746989726111722e-05]
2023-05-08 23:44:33,809	kenma_eng	INFO	loss_disc=2.143, loss_gen=3.504, loss_fm=13.130,loss_mel=20.380, loss_kl=0.445
2023-05-08 23:44:40,776	kenma_eng	INFO	====> Epoch: 206
2023-05-08 23:44:48,772	kenma_eng	INFO	====> Epoch: 207
2023-05-08 23:44:56,761	kenma_eng	INFO	====> Epoch: 208
2023-05-08 23:45:04,741	kenma_eng	INFO	====> Epoch: 209
2023-05-08 23:45:12,711	kenma_eng	INFO	Saving model and optimizer state at epoch 210 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:45:13,161	kenma_eng	INFO	Saving model and optimizer state at epoch 210 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:45:13,755	kenma_eng	INFO	====> Epoch: 210
2023-05-08 23:45:15,997	kenma_eng	INFO	Train Epoch: 211 [56%]
2023-05-08 23:45:15,999	kenma_eng	INFO	[8200, 9.740899380309685e-05]
2023-05-08 23:45:16,000	kenma_eng	INFO	loss_disc=2.647, loss_gen=3.253, loss_fm=12.424,loss_mel=19.522, loss_kl=1.341
2023-05-08 23:45:21,938	kenma_eng	INFO	====> Epoch: 211
2023-05-08 23:45:29,968	kenma_eng	INFO	====> Epoch: 212
2023-05-08 23:45:37,921	kenma_eng	INFO	====> Epoch: 213
2023-05-08 23:45:45,913	kenma_eng	INFO	====> Epoch: 214
2023-05-08 23:45:53,892	kenma_eng	INFO	Saving model and optimizer state at epoch 215 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:45:54,339	kenma_eng	INFO	Saving model and optimizer state at epoch 215 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:45:55,005	kenma_eng	INFO	====> Epoch: 215
2023-05-08 23:45:58,212	kenma_eng	INFO	Train Epoch: 216 [10%]
2023-05-08 23:45:58,213	kenma_eng	INFO	[8400, 9.734812840022278e-05]
2023-05-08 23:45:58,213	kenma_eng	INFO	loss_disc=1.651, loss_gen=4.591, loss_fm=16.276,loss_mel=18.822, loss_kl=1.662
2023-05-08 23:46:03,103	kenma_eng	INFO	====> Epoch: 216
2023-05-08 23:46:11,152	kenma_eng	INFO	====> Epoch: 217
2023-05-08 23:46:19,078	kenma_eng	INFO	====> Epoch: 218
2023-05-08 23:46:27,069	kenma_eng	INFO	====> Epoch: 219
2023-05-08 23:46:35,047	kenma_eng	INFO	Saving model and optimizer state at epoch 220 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:46:35,573	kenma_eng	INFO	Saving model and optimizer state at epoch 220 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:46:36,161	kenma_eng	INFO	====> Epoch: 220
2023-05-08 23:46:40,377	kenma_eng	INFO	Train Epoch: 221 [21%]
2023-05-08 23:46:40,379	kenma_eng	INFO	[8600, 9.728730102871649e-05]
2023-05-08 23:46:40,379	kenma_eng	INFO	loss_disc=2.058, loss_gen=3.767, loss_fm=15.166,loss_mel=19.089, loss_kl=1.259
2023-05-08 23:46:44,263	kenma_eng	INFO	====> Epoch: 221
2023-05-08 23:46:52,259	kenma_eng	INFO	====> Epoch: 222
2023-05-08 23:47:00,242	kenma_eng	INFO	====> Epoch: 223
2023-05-08 23:47:08,233	kenma_eng	INFO	====> Epoch: 224
2023-05-08 23:47:16,214	kenma_eng	INFO	Saving model and optimizer state at epoch 225 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:47:16,656	kenma_eng	INFO	Saving model and optimizer state at epoch 225 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:47:17,319	kenma_eng	INFO	====> Epoch: 225
2023-05-08 23:47:22,570	kenma_eng	INFO	Train Epoch: 226 [79%]
2023-05-08 23:47:22,572	kenma_eng	INFO	[8800, 9.722651166481428e-05]
2023-05-08 23:47:22,572	kenma_eng	INFO	loss_disc=2.134, loss_gen=4.268, loss_fm=14.685,loss_mel=20.430, loss_kl=0.855
2023-05-08 23:47:25,435	kenma_eng	INFO	====> Epoch: 226
2023-05-08 23:47:33,430	kenma_eng	INFO	====> Epoch: 227
2023-05-08 23:47:41,401	kenma_eng	INFO	====> Epoch: 228
2023-05-08 23:47:49,399	kenma_eng	INFO	====> Epoch: 229
2023-05-08 23:47:57,379	kenma_eng	INFO	Saving model and optimizer state at epoch 230 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:47:57,900	kenma_eng	INFO	Saving model and optimizer state at epoch 230 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:47:58,488	kenma_eng	INFO	====> Epoch: 230
2023-05-08 23:48:04,754	kenma_eng	INFO	Train Epoch: 231 [46%]
2023-05-08 23:48:04,756	kenma_eng	INFO	[9000, 9.716576028476738e-05]
2023-05-08 23:48:04,756	kenma_eng	INFO	loss_disc=2.041, loss_gen=3.526, loss_fm=14.019,loss_mel=19.166, loss_kl=0.711
2023-05-08 23:48:06,597	kenma_eng	INFO	====> Epoch: 231
2023-05-08 23:48:14,585	kenma_eng	INFO	====> Epoch: 232
2023-05-08 23:48:22,576	kenma_eng	INFO	====> Epoch: 233
2023-05-08 23:48:30,553	kenma_eng	INFO	====> Epoch: 234
2023-05-08 23:48:38,542	kenma_eng	INFO	Saving model and optimizer state at epoch 235 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:48:38,992	kenma_eng	INFO	Saving model and optimizer state at epoch 235 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:48:39,660	kenma_eng	INFO	====> Epoch: 235
2023-05-08 23:48:46,940	kenma_eng	INFO	Train Epoch: 236 [87%]
2023-05-08 23:48:46,942	kenma_eng	INFO	[9200, 9.710504686484176e-05]
2023-05-08 23:48:46,942	kenma_eng	INFO	loss_disc=2.383, loss_gen=3.182, loss_fm=11.174,loss_mel=15.138, loss_kl=0.837
2023-05-08 23:48:47,751	kenma_eng	INFO	====> Epoch: 236
2023-05-08 23:48:55,741	kenma_eng	INFO	====> Epoch: 237
2023-05-08 23:49:03,728	kenma_eng	INFO	====> Epoch: 238
2023-05-08 23:49:11,714	kenma_eng	INFO	====> Epoch: 239
2023-05-08 23:49:19,703	kenma_eng	INFO	Saving model and optimizer state at epoch 240 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:49:20,149	kenma_eng	INFO	Saving model and optimizer state at epoch 240 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:49:20,742	kenma_eng	INFO	====> Epoch: 240
2023-05-08 23:49:28,723	kenma_eng	INFO	====> Epoch: 241
2023-05-08 23:49:29,133	kenma_eng	INFO	Train Epoch: 242 [0%]
2023-05-08 23:49:29,135	kenma_eng	INFO	[9400, 9.703224083489565e-05]
2023-05-08 23:49:29,136	kenma_eng	INFO	loss_disc=2.283, loss_gen=3.906, loss_fm=14.977,loss_mel=21.196, loss_kl=1.113
2023-05-08 23:49:36,904	kenma_eng	INFO	====> Epoch: 242
2023-05-08 23:49:44,893	kenma_eng	INFO	====> Epoch: 243
2023-05-08 23:49:52,895	kenma_eng	INFO	====> Epoch: 244
2023-05-08 23:50:00,868	kenma_eng	INFO	Saving model and optimizer state at epoch 245 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:50:01,309	kenma_eng	INFO	Saving model and optimizer state at epoch 245 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:50:01,892	kenma_eng	INFO	====> Epoch: 245
2023-05-08 23:50:09,880	kenma_eng	INFO	====> Epoch: 246
2023-05-08 23:50:11,310	kenma_eng	INFO	Train Epoch: 247 [41%]
2023-05-08 23:50:11,312	kenma_eng	INFO	[9600, 9.69716108437664e-05]
2023-05-08 23:50:11,319	kenma_eng	INFO	loss_disc=2.562, loss_gen=3.062, loss_fm=13.378,loss_mel=19.740, loss_kl=1.235
2023-05-08 23:50:18,069	kenma_eng	INFO	====> Epoch: 247
2023-05-08 23:50:26,064	kenma_eng	INFO	====> Epoch: 248
2023-05-08 23:50:34,048	kenma_eng	INFO	====> Epoch: 249
2023-05-08 23:50:42,027	kenma_eng	INFO	Saving model and optimizer state at epoch 250 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:50:42,471	kenma_eng	INFO	Saving model and optimizer state at epoch 250 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:50:43,131	kenma_eng	INFO	====> Epoch: 250
2023-05-08 23:50:51,039	kenma_eng	INFO	====> Epoch: 251
2023-05-08 23:50:53,497	kenma_eng	INFO	Train Epoch: 252 [95%]
2023-05-08 23:50:53,499	kenma_eng	INFO	[9800, 9.691101873690936e-05]
2023-05-08 23:50:53,499	kenma_eng	INFO	loss_disc=2.281, loss_gen=4.156, loss_fm=13.992,loss_mel=18.462, loss_kl=0.613
2023-05-08 23:50:59,238	kenma_eng	INFO	====> Epoch: 252
2023-05-08 23:51:07,244	kenma_eng	INFO	====> Epoch: 253
2023-05-08 23:51:15,210	kenma_eng	INFO	====> Epoch: 254
2023-05-08 23:51:23,192	kenma_eng	INFO	Saving model and optimizer state at epoch 255 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:51:23,634	kenma_eng	INFO	Saving model and optimizer state at epoch 255 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:51:24,218	kenma_eng	INFO	====> Epoch: 255
2023-05-08 23:51:32,206	kenma_eng	INFO	====> Epoch: 256
2023-05-08 23:51:35,692	kenma_eng	INFO	Train Epoch: 257 [36%]
2023-05-08 23:51:35,694	kenma_eng	INFO	[10000, 9.685046449065278e-05]
2023-05-08 23:51:35,694	kenma_eng	INFO	loss_disc=2.226, loss_gen=3.927, loss_fm=11.863,loss_mel=18.904, loss_kl=1.791
2023-05-08 23:51:40,405	kenma_eng	INFO	====> Epoch: 257
2023-05-08 23:51:48,408	kenma_eng	INFO	====> Epoch: 258
2023-05-08 23:51:56,374	kenma_eng	INFO	====> Epoch: 259
2023-05-08 23:52:04,354	kenma_eng	INFO	Saving model and optimizer state at epoch 260 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:52:04,801	kenma_eng	INFO	Saving model and optimizer state at epoch 260 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:52:05,389	kenma_eng	INFO	====> Epoch: 260
2023-05-08 23:52:13,367	kenma_eng	INFO	====> Epoch: 261
2023-05-08 23:52:17,873	kenma_eng	INFO	Train Epoch: 262 [51%]
2023-05-08 23:52:17,875	kenma_eng	INFO	[10200, 9.678994808133967e-05]
2023-05-08 23:52:17,875	kenma_eng	INFO	loss_disc=2.367, loss_gen=3.552, loss_fm=12.217,loss_mel=14.802, loss_kl=0.540
2023-05-08 23:52:21,594	kenma_eng	INFO	====> Epoch: 262
2023-05-08 23:52:29,549	kenma_eng	INFO	====> Epoch: 263
2023-05-08 23:52:37,537	kenma_eng	INFO	====> Epoch: 264
2023-05-08 23:52:45,520	kenma_eng	INFO	Saving model and optimizer state at epoch 265 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:52:45,968	kenma_eng	INFO	Saving model and optimizer state at epoch 265 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:52:46,558	kenma_eng	INFO	====> Epoch: 265
2023-05-08 23:52:54,545	kenma_eng	INFO	====> Epoch: 266
2023-05-08 23:53:00,067	kenma_eng	INFO	Train Epoch: 267 [28%]
2023-05-08 23:53:00,069	kenma_eng	INFO	[10400, 9.67294694853279e-05]
2023-05-08 23:53:00,069	kenma_eng	INFO	loss_disc=2.086, loss_gen=3.871, loss_fm=16.090,loss_mel=20.210, loss_kl=0.717
2023-05-08 23:53:02,746	kenma_eng	INFO	====> Epoch: 267
2023-05-08 23:53:10,712	kenma_eng	INFO	====> Epoch: 268
2023-05-08 23:53:18,698	kenma_eng	INFO	====> Epoch: 269
2023-05-08 23:53:26,714	kenma_eng	INFO	Saving model and optimizer state at epoch 270 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:53:27,163	kenma_eng	INFO	Saving model and optimizer state at epoch 270 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:53:27,755	kenma_eng	INFO	====> Epoch: 270
2023-05-08 23:53:35,701	kenma_eng	INFO	====> Epoch: 271
2023-05-08 23:53:42,249	kenma_eng	INFO	Train Epoch: 272 [92%]
2023-05-08 23:53:42,252	kenma_eng	INFO	[10600, 9.666902867899003e-05]
2023-05-08 23:53:42,252	kenma_eng	INFO	loss_disc=2.008, loss_gen=3.914, loss_fm=15.602,loss_mel=20.115, loss_kl=1.201
2023-05-08 23:53:43,926	kenma_eng	INFO	====> Epoch: 272
2023-05-08 23:53:51,876	kenma_eng	INFO	====> Epoch: 273
2023-05-08 23:53:59,874	kenma_eng	INFO	====> Epoch: 274
2023-05-08 23:54:07,851	kenma_eng	INFO	Saving model and optimizer state at epoch 275 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:54:08,295	kenma_eng	INFO	Saving model and optimizer state at epoch 275 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:54:08,887	kenma_eng	INFO	====> Epoch: 275
2023-05-08 23:54:16,861	kenma_eng	INFO	====> Epoch: 276
2023-05-08 23:54:24,437	kenma_eng	INFO	Train Epoch: 277 [64%]
2023-05-08 23:54:24,439	kenma_eng	INFO	[10800, 9.660862563871342e-05]
2023-05-08 23:54:24,439	kenma_eng	INFO	loss_disc=2.096, loss_gen=4.270, loss_fm=14.102,loss_mel=18.081, loss_kl=1.553
2023-05-08 23:54:25,127	kenma_eng	INFO	====> Epoch: 277
2023-05-08 23:54:33,046	kenma_eng	INFO	====> Epoch: 278
2023-05-08 23:54:41,030	kenma_eng	INFO	====> Epoch: 279
2023-05-08 23:54:49,015	kenma_eng	INFO	Saving model and optimizer state at epoch 280 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:54:49,461	kenma_eng	INFO	Saving model and optimizer state at epoch 280 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:54:50,051	kenma_eng	INFO	====> Epoch: 280
2023-05-08 23:54:58,029	kenma_eng	INFO	====> Epoch: 281
2023-05-08 23:55:06,018	kenma_eng	INFO	====> Epoch: 282
2023-05-08 23:55:06,622	kenma_eng	INFO	Train Epoch: 283 [64%]
2023-05-08 23:55:06,624	kenma_eng	INFO	[11000, 9.653619180835758e-05]
2023-05-08 23:55:06,624	kenma_eng	INFO	loss_disc=1.838, loss_gen=3.801, loss_fm=16.227,loss_mel=18.351, loss_kl=0.419
2023-05-08 23:55:14,199	kenma_eng	INFO	====> Epoch: 283
2023-05-08 23:55:22,185	kenma_eng	INFO	====> Epoch: 284
2023-05-08 23:55:30,180	kenma_eng	INFO	Saving model and optimizer state at epoch 285 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:55:30,624	kenma_eng	INFO	Saving model and optimizer state at epoch 285 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:55:31,216	kenma_eng	INFO	====> Epoch: 285
2023-05-08 23:55:39,205	kenma_eng	INFO	====> Epoch: 286
2023-05-08 23:55:47,177	kenma_eng	INFO	====> Epoch: 287
2023-05-08 23:55:48,811	kenma_eng	INFO	Train Epoch: 288 [36%]
2023-05-08 23:55:48,813	kenma_eng	INFO	[11200, 9.647587177037196e-05]
2023-05-08 23:55:48,813	kenma_eng	INFO	loss_disc=2.106, loss_gen=3.536, loss_fm=15.607,loss_mel=18.624, loss_kl=0.811
2023-05-08 23:55:55,373	kenma_eng	INFO	====> Epoch: 288
2023-05-08 23:56:03,350	kenma_eng	INFO	====> Epoch: 289
2023-05-08 23:56:11,351	kenma_eng	INFO	Saving model and optimizer state at epoch 290 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:56:11,802	kenma_eng	INFO	Saving model and optimizer state at epoch 290 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:56:12,395	kenma_eng	INFO	====> Epoch: 290
2023-05-08 23:56:20,350	kenma_eng	INFO	====> Epoch: 291
2023-05-08 23:56:28,342	kenma_eng	INFO	====> Epoch: 292
2023-05-08 23:56:30,998	kenma_eng	INFO	Train Epoch: 293 [59%]
2023-05-08 23:56:31,000	kenma_eng	INFO	[11400, 9.641558942298625e-05]
2023-05-08 23:56:31,000	kenma_eng	INFO	loss_disc=2.425, loss_gen=3.517, loss_fm=10.334,loss_mel=19.468, loss_kl=0.564
2023-05-08 23:56:36,531	kenma_eng	INFO	====> Epoch: 293
2023-05-08 23:56:44,531	kenma_eng	INFO	====> Epoch: 294
2023-05-08 23:56:52,503	kenma_eng	INFO	Saving model and optimizer state at epoch 295 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:56:52,954	kenma_eng	INFO	Saving model and optimizer state at epoch 295 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:56:53,544	kenma_eng	INFO	====> Epoch: 295
2023-05-08 23:57:01,683	kenma_eng	INFO	====> Epoch: 296
2023-05-08 23:57:10,165	kenma_eng	INFO	====> Epoch: 297
2023-05-08 23:57:14,053	kenma_eng	INFO	Train Epoch: 298 [18%]
2023-05-08 23:57:14,057	kenma_eng	INFO	[11600, 9.635534474264972e-05]
2023-05-08 23:57:14,057	kenma_eng	INFO	loss_disc=2.473, loss_gen=3.393, loss_fm=10.933,loss_mel=18.952, loss_kl=1.169
2023-05-08 23:57:18,589	kenma_eng	INFO	====> Epoch: 298
2023-05-08 23:57:26,500	kenma_eng	INFO	====> Epoch: 299
2023-05-08 23:57:34,487	kenma_eng	INFO	Saving model and optimizer state at epoch 300 to ./logs/kenma_eng/G_2333333.pth
2023-05-08 23:57:34,943	kenma_eng	INFO	Saving model and optimizer state at epoch 300 to ./logs/kenma_eng/D_2333333.pth
2023-05-08 23:57:35,537	kenma_eng	INFO	====> Epoch: 300
2023-05-08 23:57:35,538	kenma_eng	INFO	Training is done. The program is closed.
2023-05-08 23:57:35,596	kenma_eng	INFO	saving final ckpt:Success.