File size: 1,765 Bytes
5d37c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: Patcas/my_awesome-assert-new
tags:
- generated_from_trainer
model-index:
- name: plbartAssert-docnew-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# plbartAssert-docnew-v1

This model is a fine-tuned version of [Patcas/my_awesome-assert-new](https://huggingface.co/Patcas/my_awesome-assert-new) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9764

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 230  | 1.1573          |
| No log        | 2.0   | 460  | 0.9996          |
| 1.3727        | 3.0   | 690  | 0.9757          |
| 1.3727        | 4.0   | 920  | 0.9605          |
| 0.4516        | 5.0   | 1150 | 0.9732          |
| 0.4516        | 6.0   | 1380 | 0.9845          |
| 0.2234        | 7.0   | 1610 | 0.9685          |
| 0.2234        | 8.0   | 1840 | 0.9745          |
| 0.136         | 9.0   | 2070 | 0.9773          |
| 0.136         | 10.0  | 2300 | 0.9764          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1