File size: 8,741 Bytes
d4f6329
70d0f75
 
 
539bf0b
3d045fa
cd0ac48
 
 
868fab1
 
1cde812
 
d4f6329
 
539bf0b
d4f6329
 
 
539bf0b
1d550c8
539bf0b
 
d4f6329
539bf0b
 
 
 
 
d4f6329
539bf0b
d4f6329
539bf0b
 
d4f6329
 
 
 
 
 
 
539bf0b
d4f6329
 
 
539bf0b
 
d4f6329
 
 
539bf0b
 
d4f6329
 
 
 
 
539bf0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199d637
539bf0b
 
 
 
 
 
 
dd3197e
539bf0b
 
 
436b720
 
 
 
 
 
 
 
 
539bf0b
436b720
 
 
539bf0b
 
 
7b1ecff
539bf0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
026e524
539bf0b
89027c1
539bf0b
026e524
539bf0b
 
d4f6329
 
 
 
 
 
539bf0b
d4f6329
 
 
9ee8f14
d4f6329
 
 
539bf0b
 
 
 
 
dd3197e
539bf0b
dd3197e
539bf0b
 
 
 
 
 
f1fc06e
 
 
539bf0b
 
 
 
 
d562782
9ee8f14
d562782
539bf0b
 
 
 
9ee8f14
e6fbc1d
539bf0b
 
 
 
f1fc06e
dd3197e
539bf0b
d4f6329
 
 
 
 
cd0ac48
d4f6329
cd0ac48
 
 
 
 
 
d4f6329
 
cd0ac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f6329
539bf0b
d4f6329
 
 
 
 
539bf0b
d4f6329
 
 
539bf0b
 
d4f6329
539bf0b
d4f6329
f1fc06e
7b726e5
d4f6329
 
 
539bf0b
d4f6329
539bf0b
d4f6329
539bf0b
1550fc2
 
 
 
 
539bf0b
d4f6329
539bf0b
d4f6329
539bf0b
 
 
 
 
 
 
 
d4f6329
 
 
49b60c7
d4f6329
436b720
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
---
language:
- ko
- en
license: llama3
library_name: transformers
tags:
- llama
- llama-3
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- MarkrAI/KoCommercial-Dataset
---

# Waktaverse-Llama-3-KO-8B-Instruct Model Card

## Model Details

![image/webp](https://cdn-uploads.huggingface.co/production/uploads/65d6e0640ff5bc0c9b69ddab/Va78DaYtPJU6xr4F6Ca4M.webp)
Waktaverse-Llama-3-KO-8B-Instruct is a Korean language model developed by Waktaverse AI team.
This large language model is a specialized version of the Meta-Llama-3-8B-Instruct, tailored for Korean natural language processing tasks. 
It is designed to handle a variety of complex instructions and generate coherent, contextually appropriate responses.

- **Developed by:** Waktaverse AI
- **Model type:** Large Language Model
- **Language(s) (NLP):** Korean, English
- **License:** [Llama3](https://llama.meta.com/llama3/license)
- **Finetuned from model:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)

## Model Sources

- **Repository:** [GitHub](https://github.com/PathFinderKR/Waktaverse-LLM/tree/main)
- **Paper :** [More Information Needed]



## Uses

### Direct Use

The model can be utilized directly for tasks such as text completion, summarization, and question answering without any fine-tuning. 

### Out-of-Scope Use

This model is not intended for use in scenarios that involve high-stakes decision-making including medical, legal, or safety-critical areas due to the potential risks of relying on automated decision-making. 
Moreover, any attempt to deploy the model in a manner that infringes upon privacy rights or facilitates biased decision-making is strongly discouraged.

## Bias, Risks, and Limitations

While Waktaverse Llama 3 is a robust model, it shares common limitations associated with machine learning models including potential biases in training data, vulnerability to adversarial attacks, and unpredictable behavior under edge cases. 
There is also a risk of cultural and contextual misunderstanding, particularly when the model is applied to languages and contexts it was not specifically trained on.



## How to Get Started with the Model

You can run conversational inference using the Transformers Auto classes.
We highly recommend that you add Korean system prompt for better output.
Adjust the hyperparameters as you need.

### Example Usage

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = (
    "cuda:0" if torch.cuda.is_available() else # Nvidia GPU
    "mps" if torch.backends.mps.is_available() else # Apple Silicon GPU
    "cpu"
)

model_id = "PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map=device,
)

################################################################################
# Generation parameters
################################################################################
num_return_sequences=1
max_new_tokens=1024
temperature=0.6
top_p=0.9
repetition_penalty=1.1

def prompt_template(system, user):
    return (
        "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
        f"{system}<|eot_id|>"
        
        "<|start_header_id|>user<|end_header_id|>\n\n"
        f"{user}<|eot_id|>"
        
        "<|start_header_id|>assistant<|end_header_id|>\n\n"
    )

def generate_response(system ,user):
    prompt = prompt_template(system, user)
    
    input_ids = tokenizer.encode(
        prompt,
        add_special_tokens=False,
        return_tensors="pt"
    ).to(device)
    
    outputs = model.generate(
        input_ids=input_ids,
        pad_token_id=tokenizer.eos_token_id,
        num_return_sequences=num_return_sequences,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty
    )
    
    return tokenizer.decode(outputs[0], skip_special_tokens=False)

system_prompt = "λ‹€μŒ μ§€μ‹œμ‚¬ν•­μ— λŒ€ν•œ 응닡을 μž‘μ„±ν•΄μ£Όμ„Έμš”."
user_prompt = "ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ— λŒ€ν•΄ μ„€λͺ…ν•΄μ£Όμ„Έμš”."
response = generate_response(system_prompt, user_prompt)
print(response)
```

### Example Output

```python
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

λ‹€μŒ μ§€μ‹œμ‚¬ν•­μ— λŒ€ν•œ 응닡을 μž‘μ„±ν•΄ μ£Όμ„Έμš”.<|eot_id|><|start_header_id|>user<|end_header_id|>

ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ— λŒ€ν•΄ μ„€λͺ…ν•΄μ£Όμ„Έμš”.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ μˆ˜ν•™μ—μ„œ 자주 μ‚¬μš©λ˜λŠ” μˆ˜μ—΄ 쀑 ν•˜λ‚˜λ‘œ, 0κ³Ό 1둜 μ‹œμž‘ν•˜μ—¬ λ‹€μŒ 항이 이전 두 ν•­μ˜ ν•©μœΌλ‘œ κ΅¬μ„±λ©λ‹ˆλ‹€. ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ 유λͺ…ν•œ μˆ˜ν•™μž 레온 μ•Œλ ‰μ‚°λ“œλ‘œλΉ„μΉ˜ ν”Όλ³΄λ‚˜μΉ˜κ°€ μ œμ•ˆν–ˆμœΌλ©°, 그의 이름을 λ”°μ„œ λͺ…λͺ…λ˜μ—ˆμŠ΅λ‹ˆλ‹€. 이 μˆ˜μ—΄μ€ μžμ—°μˆ˜μ™€ μ •μˆ˜λ₯Ό ν¬ν•¨ν•˜λ©°, 각 항은 이전 두 ν•­μ˜ ν•©μž…λ‹ˆλ‹€. 예λ₯Ό λ“€μ–΄, 첫 번째 항은 0이고 두 번째 항은 1이며, μ„Έ 번째 항은 2이고 λ„€ 번째 항은 3μž…λ‹ˆλ‹€. ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ 순차적으둜 μ¦κ°€ν•˜λŠ” νŠΉμ§•μ΄ μžˆμ§€λ§Œ, μˆ«μžκ°€ 컀질수둝 점점 더 λΉ λ₯΄κ²Œ μ¦κ°€ν•©λ‹ˆλ‹€. ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ λ‹€μ–‘ν•œ λΆ„μ•Όμ—μ„œ μ‚¬μš©λ˜λ©°, μˆ˜ν•™, 컴퓨터 κ³Όν•™, 생물학 λ“±μ—μ„œ μ€‘μš”ν•œ 역할을 ν•©λ‹ˆλ‹€.<|eot_id|>
```



## Training Details

### Training Data

The model is trained on the [MarkrAI/KoCommercial-Dataset](https://huggingface.co/datasets/MarkrAI/KoCommercial-Dataset), which consists of various commercial texts in Korean.

### Training Procedure

The model training used LoRA for computational efficiency. 0.04 billion parameters(0.51% of total parameters) were trained.

#### Training Hyperparameters

```python
################################################################################
# bitsandbytes parameters
################################################################################
load_in_4bit=True
bnb_4bit_compute_dtype=torch.bfloat16
bnb_4bit_quant_type="nf4"
bnb_4bit_use_double_quant=True

################################################################################
# LoRA parameters
################################################################################
task_type="CAUSAL_LM"
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
r=8
lora_alpha=16
lora_dropout=0.05
bias="none"

################################################################################
# TrainingArguments parameters
################################################################################
num_train_epochs=1
per_device_train_batch_size=1
gradient_accumulation_steps=1
gradient_checkpointing=True
learning_rate=2e-5
lr_scheduler_type="cosine"
warmup_ratio=0.1
optim = "paged_adamw_32bit"
weight_decay=0.01

################################################################################
# SFT parameters
################################################################################
max_seq_length=4096
packing=False
```



## Evaluation

### Metrics

- **Ko-HellaSwag:**
- **Ko-MMLU:**
- **Ko-Arc:**
- **Ko-Truthful QA:**
- **Ko-CommonGen V2:**
  
### Results

<table>
  <tr>
   <td><strong>Benchmark</strong>
   </td>
   <td><strong>Waktaverse Llama 3 8B</strong>
   </td>
   <td><strong>Llama 3 8B</strong>
   </td>
  </tr>
  <tr>
   <td>Ko-HellaSwag:
   </td>
   <td>0
   </td>
   <td>0
   </td>
  </tr>
  <tr>
   <td>Ko-MMLU:
   </td>
   <td>0
   </td>
   <td>0
   </td>
  </tr>
  <tr>
   <td>Ko-Arc:
   </td>
   <td>0
   </td>
   <td>0
   </td>
  </tr>
  <tr>
   <td>Ko-Truthful QA:
   </td>
   <td>0
   </td>
   <td>0
   </td>
  </tr>
  <tr>
   <td>Ko-CommonGen V2:
   </td>
   <td>0
   </td>
   <td>0
   </td>
</table>

## Technical Specifications

### Compute Infrastructure

#### Hardware

- **GPU:** NVIDIA GeForce RTX 4080 SUPER

#### Software

- **Operating System:** Linux
- **Deep Learning Framework:** Hugging Face Transformers, PyTorch

### Training Details

- **Training time:** 80 hours
- More details on [Weights & Biases](https://wandb.ai/pathfinderkr/Waktaverse-Llama-3-KO-8B-Instruct?nw=nwuserpathfinderkr)



## Citation

**Waktaverse-Llama-3**

```
@article{waktaversellama3modelcard,
  title={Waktaverse Llama 3 Model Card},
  author={AI@Waktaverse},
  year={2024},
  url = {https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct}
```

**Llama-3**

```
@article{llama3modelcard,
  title={Llama 3 Model Card},
  author={AI@Meta},
  year={2024},
  url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
```



## Model Card Authors

[PathFinderKR](https://github.com/PathFinderKR)