File size: 4,844 Bytes
e0609f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import math
from typing import Optional, List
from functools import lru_cache
from itertools import chain, tee

import torch
import torch.nn.functional as F

n_dists = {
    0: [1],
    1: [0.4, 0.6],
    2: [0.2, 0.3, 0.5],
    3: [0.1, 0.2, 0.3, 0.4],
    4: [0.1, 0.15, 0.2, 0.25, 0.3],
}

strats = {"linear": lambda x: x, "log": lambda x: math.log(x + 1), "exp": lambda x: x**2}

def pad_sequence(
    sequence,
    n,
    pad_left=False,
    pad_right=False,
    left_pad_symbol=None,
    right_pad_symbol=None,
):
    """Copied from NLTK"""
    sequence = iter(sequence)
    if pad_left:
        sequence = chain((left_pad_symbol,) * (n - 1), sequence)
    if pad_right:
        sequence = chain(sequence, (right_pad_symbol,) * (n - 1))
    return sequence

def ngrams(sequence, n, **kwargs):
    """Copied from NLTK"""
    sequence = pad_sequence(sequence, n, **kwargs)

    # Creates the sliding window, of n no. of items.
    # `iterables` is a tuple of iterables where each iterable is a window of n items.
    iterables = tee(sequence, n)

    for i, sub_iterable in enumerate(iterables):  # For each window,
        for _ in range(i):  # iterate through every order of ngrams
            next(sub_iterable, None)  # generate the ngrams within the window.
    return zip(*iterables)  # Unpack and flattens the iterables.


@lru_cache(maxsize=5)
def soft_dist(n):
    return [1 / n] * n


@lru_cache(maxsize=5)
def n_dist(n: int, strategy: str) -> list[float]:
    """dist of ngram weight is logarithmic"""
    ns = list(range(1, n + 1))
    xs = list(map(strats[strategy], ns))
    result = list(map(lambda x: x / sum(xs), xs))
    return result

def soft_n_hot(
    input,
    num_classes: int,
    strategy: Optional[str],
):

    shape = list(input.size())[1:]

    shape.append(num_classes)

    ret = torch.zeros(shape).to(input.device)

    if strategy:
        soft_labels = n_dist(input.size(0), strategy)
    else:
        soft_labels = [1] * input.size(0)

    for i, t in enumerate(input):
        ret.scatter_(-1, t.unsqueeze(-1), soft_labels[i])

    return ret


def n_hot(t, num_clases, ngram_sequences: Optional[torch.Tensor] = None, unk_idx: Optional[int] = None):

    shape = list(t.size())

    if ngram_sequences is not None:
        shape.append(num_clases)
        ret = torch.zeros(shape).to(t.device)
        ret.scatter_(-1, t.unsqueeze(-1), 1)
        for seq in ngram_sequences:
            if unk_idx is not None:
                mask = torch.eq(seq, unk_idx)
                seq[mask] = t[mask]
            ret.scatter_(-1, seq.unsqueeze(-1), 1)
        return ret

    elif len(shape) == 2:
        return F.one_hot(t, num_classes=num_clases).float()
    else:
        shape = shape[1:]
        shape.append(num_clases)
        ret = torch.zeros(shape).to(t.device)
        # Expect that first dimension is for all n-grams
        for seq in t:
            ret.scatter_(-1, seq.unsqueeze(-1), 1)

    return ret


class NGramsEmbedding(torch.nn.Embedding):
    """N-Hot encoder"""

    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        padding_idx: Optional[int] = None,
        max_norm: Optional[float] = None,
        norm_type: float = 2,
        scale_grad_by_freq: bool = False,
        sparse: bool = False,
        _weight: Optional[torch.Tensor] = None,
        device=None,
        dtype=None,
        unk_idx: Optional[int] = None
    ) -> None:
        super().__init__(
            num_embeddings,
            embedding_dim,
            padding_idx=padding_idx,
            max_norm=max_norm,
            norm_type=norm_type,
            scale_grad_by_freq=scale_grad_by_freq,
            sparse=sparse,
            _weight=_weight,
            device=device,
            dtype=dtype,
        )

        self.num_classes = num_embeddings
        self.unk_idx = unk_idx

    def forward(self, input: torch.Tensor, ngram_sequences: Optional[torch.Tensor] = None):
        return self._forward(
            n_hot(input, self.num_classes, ngram_sequences, self.unk_idx)
        )

    def _forward(self, n_hot: torch.Tensor) -> torch.Tensor:
        return F.linear(n_hot, self.weight.t())


def collect_n_gram_sequences(**kwargs) -> List[torch.Tensor]:
    sequences = []
    for n in range(2, len(kwargs)+2):
        s = kwargs[f"gram_{n}_sequence"]
        if s is not None:
            sequences.append(s)
        else:
            break

    return sequences

def shift_with_pad(target_tensor, n, from_tensor):
    shifted = target_tensor[:, n:]

    seq_size = target_tensor.size(1) - 1

    missing_idxs = torch.arange(seq_size - (n-1), seq_size).to(target_tensor.device)

    # Pad with missing idxs from unigram tensor
    shifted = torch.concat(
        (shifted, from_tensor.index_select(1, missing_idxs)), dim=1
    )

    return shifted