File size: 6,652 Bytes
4d3e798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
python examples/scripts/reward_modeling.py \
    --model_name_or_path=facebook/opt-350m \
    --output_dir="reward_modeling_anthropic_hh" \
    --per_device_train_batch_size=16 \
    --num_train_epochs=1 \
    --gradient_accumulation_steps=2 \
    --gradient_checkpointing=True \
    --learning_rate=1.41e-5 \
    --report_to="wandb" \
    --remove_unused_columns=False \
    --optim="adamw_torch" \
    --logging_steps=10 \
    --eval_strategy="steps" \
    --eval_steps=500 \
    --max_length=512 \
"""
import warnings

import torch
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser

from trl import ModelConfig, RewardConfig, RewardTrainer, get_kbit_device_map, get_peft_config, get_quantization_config

from dataclasses import dataclass, field
from transformers import TrainingArguments
print('imported')
@dataclass
class DatasetConfig:
    reedsy_dataset: str = field(default=True, metadata={"help": "Path to the Reedsy dataset"})
    datapath: str = field(default=None, metadata={"help": "Path to the dataset"})
    pairpath: str = field(default=None, metadata={"help": "Path to the story pairs"})
    split_by: str = field(default="random", metadata={"help": "How to split the dataset"})
    dt_mode: str = field(default="m3", metadata={"help": "DT mode"})
    dt_margin: bool = field(default=False, metadata={"help": "DT margin flag"})
    time_window: int = field(default=3600, metadata={"help": "Time window for DT"})
    used_dataset_size: int = field(default=-1, metadata={"help": "Size of the dataset to use"})

tqdm.pandas()


if __name__ == "__main__":
    parser = HfArgumentParser((RewardConfig, ModelConfig, DatasetConfig))
    config, model_config, dataset_config = parser.parse_args_into_dataclasses()
    config.gradient_checkpointing_kwargs = dict(use_reentrant=False)

    ################
    # Model & Tokenizer
    ################
    torch_dtype = (
        model_config.torch_dtype
        if model_config.torch_dtype in ["auto", None]
        else getattr(torch, model_config.torch_dtype)
    )
    quantization_config = get_quantization_config(model_config)
    model_kwargs = dict(
        revision=model_config.model_revision,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
    )
    model = AutoModelForSequenceClassification.from_pretrained(
        model_config.model_name_or_path, num_labels=1, trust_remote_code=model_config.trust_remote_code, **model_kwargs
    )

    if model_config.lora_task_type != "SEQ_CLS":
        warnings.warn(
            "You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs"
            " Make sure to pass --lora_task_type SEQ_CLS when using this script."
        )

    ################
    # Dataset
    ################
    if not dataset_config.reedsy_dataset:
        raw_datasets = load_dataset(dataset_config.dataset_name)

        train_dataset = raw_datasets[dataset_config.dataset_train_split]
        eval_dataset = raw_datasets[dataset_config.dataset_test_split]
    else:
        from dataloader import StoryPairDataset
        SPdataloader = StoryPairDataset(dataset_config.datapath,
                                    dataset_config.pairpath,
                                    tokenizer,
                                    task='rm',
                                    used_dataset_size=dataset_config.used_dataset_size,
                                    train_test_split=0.1,
                                    split_by=dataset_config.split_by,
                                    max_len=4096,
                                    mode= dataset_config.dt_mode,
                                    max_time_window=dataset_config.time_window,
                                    least_likes= 10,
                                    margin=dataset_config.dt_margin)
    print('dataset ready')

    def preprocess_function(examples):
        chosen_text = examples['chosen_text']
        rejected_text = examples['rejected_text']
        tokenized_input_chosen = tokenizer(chosen_text, truncation=True)
        tokenized_input_rejected = tokenizer(rejected_text, truncation=True)
        examples['input_ids_chosen'] = tokenized_input_chosen['input_ids']
        examples['attention_mask_chosen'] = tokenized_input_chosen['attention_mask']
        examples['input_ids_rejected'] = tokenized_input_rejected['input_ids']
        examples['attention_mask_rejected'] = tokenized_input_rejected['attention_mask']
        return examples


    train_dataset = SPdataloader.dataset['train'].map(preprocess_function,num_proc=32)
    eval_dataset = SPdataloader.dataset['test'].map(preprocess_function,num_proc=32)

    # Preprocess the dataset and filter out examples that are longer than args.max_length
    # raw_datasets = raw_datasets.map(
    #     preprocess_function,
    #     batched=True,
    #     num_proc=4,
    # )

    # train_dataset = dataloader.dataset['train'].map(preprocess_function,num_proc=32)
    # eval_dataset = dataloader.dataset['test'].map(preprocess_function,num_proc=32)
    print('dataset ready')
    #print('one example:', train_dataset[0])


    ################
    # Training
    ################
    trainer = RewardTrainer(
        model=model,
        tokenizer=tokenizer,
        args=config,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        peft_config=get_peft_config(model_config),
    )
    trainer.train()
    saving_path = '/workspace/RMmodels/' + model_config.model_name_or_path.split('/')[-1] + str(dataset_config.time_window) 
    trainer.save_model(saving_path)
    trainer.push_to_hub()
    metrics = trainer.evaluate()
    trainer.log_metrics("eval", metrics)
    print(metrics)