Upload 3 files
Browse files- .gitattributes +2 -0
- UsonicSimple.ipynb +418 -0
- mymodel.pdparams +3 -0
- optimizer.pdopt +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
mymodel.pdparams filter=lfs diff=lfs merge=lfs -text
|
36 |
+
optimizer.pdopt filter=lfs diff=lfs merge=lfs -text
|
UsonicSimple.ipynb
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"请点击[此处](https://ai.baidu.com/docs#/AIStudio_Project_Notebook/a38e5576)查看本环境基本用法. <br>\n",
|
8 |
+
"Please click [here ](https://ai.baidu.com/docs#/AIStudio_Project_Notebook/a38e5576) for more detailed instructions. "
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 11,
|
14 |
+
"metadata": {
|
15 |
+
"execution": {
|
16 |
+
"iopub.execute_input": "2022-10-11T15:15:49.511879Z",
|
17 |
+
"iopub.status.busy": "2022-10-11T15:15:49.511286Z",
|
18 |
+
"iopub.status.idle": "2022-10-11T15:15:51.568549Z",
|
19 |
+
"shell.execute_reply": "2022-10-11T15:15:51.567597Z",
|
20 |
+
"shell.execute_reply.started": "2022-10-11T15:15:49.511839Z"
|
21 |
+
},
|
22 |
+
"jupyter": {
|
23 |
+
"outputs_hidden": false
|
24 |
+
},
|
25 |
+
"scrolled": true,
|
26 |
+
"tags": []
|
27 |
+
},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"import os\n",
|
31 |
+
"import io\n",
|
32 |
+
"import numpy as np\n",
|
33 |
+
"import matplotlib.pyplot as plt\n",
|
34 |
+
"from PIL import Image\n",
|
35 |
+
"import paddle\n",
|
36 |
+
"from paddle.nn import functional as F\n",
|
37 |
+
"import random\n",
|
38 |
+
"from paddle.io import Dataset\n",
|
39 |
+
"from visualdl import LogWriter\n",
|
40 |
+
"from paddle.vision.transforms import transforms as T\n",
|
41 |
+
"import warnings\n",
|
42 |
+
"import cv2 as cv\n",
|
43 |
+
"from PIL import Image\n",
|
44 |
+
"import re\n",
|
45 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
46 |
+
"os.environ[\"KMP_DUPLICATE_LIB_OK\"]=\"TRUE\""
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": 12,
|
52 |
+
"metadata": {
|
53 |
+
"execution": {
|
54 |
+
"iopub.execute_input": "2022-10-11T15:16:14.415916Z",
|
55 |
+
"iopub.status.busy": "2022-10-11T15:16:14.415245Z",
|
56 |
+
"iopub.status.idle": "2022-10-11T15:16:14.428584Z",
|
57 |
+
"shell.execute_reply": "2022-10-11T15:16:14.427470Z",
|
58 |
+
"shell.execute_reply.started": "2022-10-11T15:16:14.415874Z"
|
59 |
+
},
|
60 |
+
"jupyter": {
|
61 |
+
"outputs_hidden": false
|
62 |
+
},
|
63 |
+
"tags": []
|
64 |
+
},
|
65 |
+
"outputs": [],
|
66 |
+
"source": [
|
67 |
+
"class SeparableConv2D(paddle.nn.Layer):\n",
|
68 |
+
" def __init__(self,\n",
|
69 |
+
" in_channels,\n",
|
70 |
+
" out_channels,\n",
|
71 |
+
" kernel_size,\n",
|
72 |
+
" stride=1,\n",
|
73 |
+
" padding=0,\n",
|
74 |
+
" dilation=1,\n",
|
75 |
+
" groups=None,\n",
|
76 |
+
" weight_attr=None,\n",
|
77 |
+
" bias_attr=None,\n",
|
78 |
+
" data_format=\"NCHW\"):\n",
|
79 |
+
" super(SeparableConv2D, self).__init__()\n",
|
80 |
+
"\n",
|
81 |
+
" self._padding = padding\n",
|
82 |
+
" self._stride = stride\n",
|
83 |
+
" self._dilation = dilation\n",
|
84 |
+
" self._in_channels = in_channels\n",
|
85 |
+
" self._data_format = data_format\n",
|
86 |
+
"\n",
|
87 |
+
" # 第一次卷积参数,没有偏置参数\n",
|
88 |
+
" filter_shape = [in_channels, 1] + self.convert_to_list(kernel_size, 2, 'kernel_size')\n",
|
89 |
+
" self.weight_conv = self.create_parameter(shape=filter_shape, attr=weight_attr)\n",
|
90 |
+
"\n",
|
91 |
+
" # 第二次卷积参数\n",
|
92 |
+
" filter_shape = [out_channels, in_channels] + self.convert_to_list(1, 2, 'kernel_size')\n",
|
93 |
+
" self.weight_pointwise = self.create_parameter(shape=filter_shape, attr=weight_attr)\n",
|
94 |
+
" self.bias_pointwise = self.create_parameter(shape=[out_channels],\n",
|
95 |
+
" attr=bias_attr,\n",
|
96 |
+
" is_bias=True)\n",
|
97 |
+
"\n",
|
98 |
+
" def convert_to_list(self, value, n, name, dtype=np.int):\n",
|
99 |
+
" if isinstance(value, dtype):\n",
|
100 |
+
" return [value, ] * n\n",
|
101 |
+
" else:\n",
|
102 |
+
" try:\n",
|
103 |
+
" value_list = list(value)\n",
|
104 |
+
" except TypeError:\n",
|
105 |
+
" raise ValueError(\"The \" + name +\n",
|
106 |
+
" \"'s type must be list or tuple. Received: \" + str(\n",
|
107 |
+
" value))\n",
|
108 |
+
" if len(value_list) != n:\n",
|
109 |
+
" raise ValueError(\"The \" + name + \"'s length must be \" + str(n) +\n",
|
110 |
+
" \". Received: \" + str(value))\n",
|
111 |
+
" for single_value in value_list:\n",
|
112 |
+
" try:\n",
|
113 |
+
" dtype(single_value)\n",
|
114 |
+
" except (ValueError, TypeError):\n",
|
115 |
+
" raise ValueError(\n",
|
116 |
+
" \"The \" + name + \"'s type must be a list or tuple of \" + str(\n",
|
117 |
+
" n) + \" \" + str(dtype) + \" . Received: \" + str(\n",
|
118 |
+
" value) + \" \"\n",
|
119 |
+
" \"including element \" + str(single_value) + \" of type\" + \" \"\n",
|
120 |
+
" + str(type(single_value)))\n",
|
121 |
+
" return value_list\n",
|
122 |
+
"\n",
|
123 |
+
" def forward(self, inputs):\n",
|
124 |
+
" conv_out = F.conv2d(inputs,\n",
|
125 |
+
" self.weight_conv,\n",
|
126 |
+
" padding=self._padding,\n",
|
127 |
+
" stride=self._stride,\n",
|
128 |
+
" dilation=self._dilation,\n",
|
129 |
+
" groups=self._in_channels,\n",
|
130 |
+
" data_format=self._data_format)\n",
|
131 |
+
"\n",
|
132 |
+
" out = F.conv2d(conv_out,\n",
|
133 |
+
" self.weight_pointwise,\n",
|
134 |
+
" bias=self.bias_pointwise,\n",
|
135 |
+
" padding=0,\n",
|
136 |
+
" stride=1,\n",
|
137 |
+
" dilation=1,\n",
|
138 |
+
" groups=1,\n",
|
139 |
+
" data_format=self._data_format)\n",
|
140 |
+
"\n",
|
141 |
+
" return out\n",
|
142 |
+
"class Encoder(paddle.nn.Layer):\n",
|
143 |
+
" def __init__(self, in_channels, out_channels):\n",
|
144 |
+
" super(Encoder, self).__init__()\n",
|
145 |
+
"\n",
|
146 |
+
" self.relus = paddle.nn.LayerList(\n",
|
147 |
+
" [paddle.nn.ReLU() for i in range(2)])\n",
|
148 |
+
" self.separable_conv_01 = SeparableConv2D(in_channels,\n",
|
149 |
+
" out_channels,\n",
|
150 |
+
" kernel_size=3,\n",
|
151 |
+
" padding='same')\n",
|
152 |
+
" self.bns = paddle.nn.LayerList(\n",
|
153 |
+
" [paddle.nn.BatchNorm2D(out_channels) for i in range(2)])\n",
|
154 |
+
"\n",
|
155 |
+
" self.separable_conv_02 = SeparableConv2D(out_channels,\n",
|
156 |
+
" out_channels,\n",
|
157 |
+
" kernel_size=3,\n",
|
158 |
+
" padding='same')\n",
|
159 |
+
" self.pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)\n",
|
160 |
+
" self.residual_conv = paddle.nn.Conv2D(in_channels,\n",
|
161 |
+
" out_channels,\n",
|
162 |
+
" kernel_size=1,\n",
|
163 |
+
" stride=2,\n",
|
164 |
+
" padding='same')\n",
|
165 |
+
"\n",
|
166 |
+
" def forward(self, inputs):\n",
|
167 |
+
" previous_block_activation = inputs\n",
|
168 |
+
"\n",
|
169 |
+
" y = self.relus[0](inputs)\n",
|
170 |
+
" y = self.separable_conv_01(y)\n",
|
171 |
+
" y = self.bns[0](y)\n",
|
172 |
+
" y = self.relus[1](y)\n",
|
173 |
+
" y = self.separable_conv_02(y)\n",
|
174 |
+
" y = self.bns[1](y)\n",
|
175 |
+
" y = self.pool(y)\n",
|
176 |
+
"\n",
|
177 |
+
" residual = self.residual_conv(previous_block_activation)\n",
|
178 |
+
" y = paddle.add(y, residual)\n",
|
179 |
+
"\n",
|
180 |
+
" return y\n",
|
181 |
+
"class Decoder(paddle.nn.Layer):\n",
|
182 |
+
" def __init__(self, in_channels, out_channels):\n",
|
183 |
+
" super(Decoder, self).__init__()\n",
|
184 |
+
"\n",
|
185 |
+
" self.relus = paddle.nn.LayerList(\n",
|
186 |
+
" [paddle.nn.ReLU() for i in range(2)])\n",
|
187 |
+
" self.conv_transpose_01 = paddle.nn.Conv2DTranspose(in_channels,\n",
|
188 |
+
" out_channels,\n",
|
189 |
+
" kernel_size=3,\n",
|
190 |
+
" padding=1)\n",
|
191 |
+
" self.conv_transpose_02 = paddle.nn.Conv2DTranspose(out_channels,\n",
|
192 |
+
" out_channels,\n",
|
193 |
+
" kernel_size=3,\n",
|
194 |
+
" padding=1)\n",
|
195 |
+
" self.bns = paddle.nn.LayerList(\n",
|
196 |
+
" [paddle.nn.BatchNorm2D(out_channels) for i in range(2)]\n",
|
197 |
+
" )\n",
|
198 |
+
" self.upsamples = paddle.nn.LayerList(\n",
|
199 |
+
" [paddle.nn.Upsample(scale_factor=2.0) for i in range(2)]\n",
|
200 |
+
" )\n",
|
201 |
+
" self.residual_conv = paddle.nn.Conv2D(in_channels,\n",
|
202 |
+
" out_channels,\n",
|
203 |
+
" kernel_size=1,\n",
|
204 |
+
" padding='same')\n",
|
205 |
+
"\n",
|
206 |
+
" def forward(self, inputs):\n",
|
207 |
+
" previous_block_activation = inputs\n",
|
208 |
+
"\n",
|
209 |
+
" y = self.relus[0](inputs)\n",
|
210 |
+
" y = self.conv_transpose_01(y)\n",
|
211 |
+
" y = self.bns[0](y)\n",
|
212 |
+
" y = self.relus[1](y)\n",
|
213 |
+
" y = self.conv_transpose_02(y)\n",
|
214 |
+
" y = self.bns[1](y)\n",
|
215 |
+
" y = self.upsamples[0](y)\n",
|
216 |
+
"\n",
|
217 |
+
" residual = self.upsamples[1](previous_block_activation)\n",
|
218 |
+
" residual = self.residual_conv(residual)\n",
|
219 |
+
"\n",
|
220 |
+
" y = paddle.add(y, residual)\n",
|
221 |
+
"\n",
|
222 |
+
" return y\n",
|
223 |
+
"class PetNet(paddle.nn.Layer):\n",
|
224 |
+
" def __init__(self, num_classes):\n",
|
225 |
+
" super(PetNet, self).__init__()\n",
|
226 |
+
"\n",
|
227 |
+
" self.conv_1 = paddle.nn.Conv2D(3, 32,\n",
|
228 |
+
" kernel_size=3,\n",
|
229 |
+
" stride=2,\n",
|
230 |
+
" padding='same')\n",
|
231 |
+
" self.bn = paddle.nn.BatchNorm2D(32)\n",
|
232 |
+
" self.relu = paddle.nn.ReLU()\n",
|
233 |
+
"\n",
|
234 |
+
" in_channels = 32\n",
|
235 |
+
" self.encoders = []\n",
|
236 |
+
" self.encoder_list = [64, 128, 256]\n",
|
237 |
+
" self.decoder_list = [256, 128, 64, 32]\n",
|
238 |
+
"\n",
|
239 |
+
" for out_channels in self.encoder_list:\n",
|
240 |
+
" block = self.add_sublayer('encoder_{}'.format(out_channels),\n",
|
241 |
+
" Encoder(in_channels, out_channels))\n",
|
242 |
+
" self.encoders.append(block)\n",
|
243 |
+
" in_channels = out_channels\n",
|
244 |
+
"\n",
|
245 |
+
" self.decoders = []\n",
|
246 |
+
"\n",
|
247 |
+
" for out_channels in self.decoder_list:\n",
|
248 |
+
" block = self.add_sublayer('decoder_{}'.format(out_channels),\n",
|
249 |
+
" Decoder(in_channels, out_channels))\n",
|
250 |
+
" self.decoders.append(block)\n",
|
251 |
+
" in_channels = out_channels\n",
|
252 |
+
"\n",
|
253 |
+
" self.output_conv = paddle.nn.Conv2D(in_channels,\n",
|
254 |
+
" num_classes,\n",
|
255 |
+
" kernel_size=3,\n",
|
256 |
+
" padding='same')\n",
|
257 |
+
"\n",
|
258 |
+
" def forward(self, inputs):\n",
|
259 |
+
" y = self.conv_1(inputs)\n",
|
260 |
+
" y = self.bn(y)\n",
|
261 |
+
" y = self.relu(y)\n",
|
262 |
+
"\n",
|
263 |
+
" for encoder in self.encoders:\n",
|
264 |
+
" y = encoder(y)\n",
|
265 |
+
"\n",
|
266 |
+
" for decoder in self.decoders:\n",
|
267 |
+
" y = decoder(y)\n",
|
268 |
+
"\n",
|
269 |
+
" y = self.output_conv(y)\n",
|
270 |
+
" return y\n",
|
271 |
+
"IMAGE_SIZE = (512, 512)\n",
|
272 |
+
"num_classes = 2\n",
|
273 |
+
"network = PetNet(num_classes)\n",
|
274 |
+
"model = paddle.Model(network)"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "code",
|
279 |
+
"execution_count": 13,
|
280 |
+
"metadata": {
|
281 |
+
"execution": {
|
282 |
+
"iopub.execute_input": "2022-10-11T15:16:14.415916Z",
|
283 |
+
"iopub.status.busy": "2022-10-11T15:16:14.415245Z",
|
284 |
+
"iopub.status.idle": "2022-10-11T15:16:14.428584Z",
|
285 |
+
"shell.execute_reply": "2022-10-11T15:16:14.427470Z",
|
286 |
+
"shell.execute_reply.started": "2022-10-11T15:16:14.415874Z"
|
287 |
+
},
|
288 |
+
"jupyter": {
|
289 |
+
"outputs_hidden": false
|
290 |
+
},
|
291 |
+
"scrolled": true,
|
292 |
+
"tags": []
|
293 |
+
},
|
294 |
+
"outputs": [],
|
295 |
+
"source": [
|
296 |
+
"#加载训练好的权重\n",
|
297 |
+
"optimizer = paddle.optimizer.RMSProp(learning_rate=0.001, parameters=network.parameters())\n",
|
298 |
+
"layer_state_dict = paddle.load(\"mymodel.pdparams\")\n",
|
299 |
+
"opt_state_dict = paddle.load(\"optimizer.pdopt\")\n",
|
300 |
+
"\n",
|
301 |
+
"network.set_state_dict(layer_state_dict)\n",
|
302 |
+
"optimizer.set_state_dict(opt_state_dict)"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": 14,
|
308 |
+
"metadata": {
|
309 |
+
"execution": {
|
310 |
+
"iopub.execute_input": "2022-10-11T16:07:50.639995Z",
|
311 |
+
"iopub.status.busy": "2022-10-11T16:07:50.639338Z",
|
312 |
+
"iopub.status.idle": "2022-10-11T16:07:50.941928Z",
|
313 |
+
"shell.execute_reply": "2022-10-11T16:07:50.940805Z",
|
314 |
+
"shell.execute_reply.started": "2022-10-11T16:07:50.639949Z"
|
315 |
+
},
|
316 |
+
"jupyter": {
|
317 |
+
"outputs_hidden": false
|
318 |
+
},
|
319 |
+
"tags": []
|
320 |
+
},
|
321 |
+
"outputs": [],
|
322 |
+
"source": [
|
323 |
+
"def FinalImage(mask,image):\n",
|
324 |
+
" # 这个函数的作用是把mask高斯模糊之后的遮罩和原始的image叠加起来\n",
|
325 |
+
" #输入 mask [0,255]的这招图\n",
|
326 |
+
" #image 必须无条件转化为512*512 三通道彩图\n",
|
327 |
+
" \n",
|
328 |
+
" th = cv.threshold(mask,140,255,cv.THRESH_BINARY)[1]\n",
|
329 |
+
" blur = cv.GaussianBlur(th,(33,33), 15)\n",
|
330 |
+
" heatmap_img = cv.applyColorMap(blur, cv.COLORMAP_OCEAN)\n",
|
331 |
+
" Blendermap = cv.addWeighted(heatmap_img, 0.5, image, 1, 0)\n",
|
332 |
+
" return Blendermap"
|
333 |
+
]
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"cell_type": "code",
|
337 |
+
"execution_count": 15,
|
338 |
+
"metadata": {},
|
339 |
+
"outputs": [
|
340 |
+
{
|
341 |
+
"name": "stdout",
|
342 |
+
"output_type": "stream",
|
343 |
+
"text": [
|
344 |
+
"IMPORTANT: You are using gradio version 3.12.0, however version 3.14.0 is available, please upgrade.\n",
|
345 |
+
"--------\n",
|
346 |
+
"Running on local URL: http://127.0.0.1:7864\n",
|
347 |
+
"Running on public URL: https://317fc297694e39a2.gradio.app\n",
|
348 |
+
"\n",
|
349 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"data": {
|
354 |
+
"text/html": [
|
355 |
+
"<div><iframe src=\"https://317fc297694e39a2.gradio.app\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
356 |
+
],
|
357 |
+
"text/plain": [
|
358 |
+
"<IPython.core.display.HTML object>"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
"metadata": {},
|
362 |
+
"output_type": "display_data"
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"data": {
|
366 |
+
"text/plain": []
|
367 |
+
},
|
368 |
+
"execution_count": 15,
|
369 |
+
"metadata": {},
|
370 |
+
"output_type": "execute_result"
|
371 |
+
}
|
372 |
+
],
|
373 |
+
"source": [
|
374 |
+
"import gradio as gr\n",
|
375 |
+
"def Showsegmentation(image):\n",
|
376 |
+
" mask = paddle.argmax(network(paddle.to_tensor([((image - 127.5) / 127.5).transpose(2, 0, 1)]))[0], axis=0).numpy()\n",
|
377 |
+
" mask=mask.astype('uint8')*255\n",
|
378 |
+
" immask=cv.resize(mask, (512, 512))\n",
|
379 |
+
" image=cv.resize(image,(512,512))\n",
|
380 |
+
" blendmask=FinalImage(immask,image)\n",
|
381 |
+
" return blendmask\n",
|
382 |
+
"\n",
|
383 |
+
"gr.Interface(fn=Showsegmentation, inputs=\"image\", outputs=\"image\").launch(share=True)"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "code",
|
388 |
+
"execution_count": null,
|
389 |
+
"metadata": {},
|
390 |
+
"outputs": [],
|
391 |
+
"source": []
|
392 |
+
}
|
393 |
+
],
|
394 |
+
"metadata": {
|
395 |
+
"kernelspec": {
|
396 |
+
"display_name": "Python 3 (ipykernel)",
|
397 |
+
"language": "python",
|
398 |
+
"name": "python3"
|
399 |
+
},
|
400 |
+
"language_info": {
|
401 |
+
"codemirror_mode": {
|
402 |
+
"name": "ipython",
|
403 |
+
"version": 3
|
404 |
+
},
|
405 |
+
"file_extension": ".py",
|
406 |
+
"mimetype": "text/x-python",
|
407 |
+
"name": "python",
|
408 |
+
"nbconvert_exporter": "python",
|
409 |
+
"pygments_lexer": "ipython3",
|
410 |
+
"version": "3.8.5"
|
411 |
+
},
|
412 |
+
"toc-autonumbering": true,
|
413 |
+
"toc-showcode": true,
|
414 |
+
"toc-showmarkdowntxt": true
|
415 |
+
},
|
416 |
+
"nbformat": 4,
|
417 |
+
"nbformat_minor": 4
|
418 |
+
}
|
mymodel.pdparams
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4799775b1a4c96d435f52814aff2a7f4c085b61d23bc508a435fd6a9309b1c5
|
3 |
+
size 8245289
|
optimizer.pdopt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d131089d6ef5b45ee64d61ac2419b7f86b2331e2c89b124eda3881613cc4a057
|
3 |
+
size 24685981
|