PereLluis13 commited on
Commit
712c47e
1 Parent(s): 3b1702c

Update README.md

Browse files

Added WER using evaluation script.

Files changed (1) hide show
  1. README.md +27 -31
README.md CHANGED
@@ -1,4 +1,3 @@
1
- <======================Copy **raw** version from here=========================
2
  ---
3
  language: el #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
4
  datasets:
@@ -25,12 +24,12 @@ model-index:
25
  metrics:
26
  - name: Test WER
27
  type: wer
28
- value: 34.75 #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value
29
  ---
30
 
31
- # Wav2Vec2-Large-XLSR-53-greek #TODO: replace language with your {language}, *e.g.* French
32
 
33
- Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on greek using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10) datasets. #TODO: replace {language} with your language, *e.g.* French and eventually add more datasets that were used and eventually remove common voice if model was not trained on common voice
34
  When using this model, make sure that your speech input is sampled at 16kHz.
35
 
36
  ## Usage
@@ -43,25 +42,25 @@ import torchaudio
43
  from datasets import load_dataset
44
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
45
 
46
- test_dataset = load_dataset("common_voice", "el", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
47
 
48
- processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
49
- model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
50
 
51
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
52
 
53
  # Preprocessing the datasets.
54
  # We need to read the aduio files as arrays
55
  def speech_file_to_array_fn(batch):
56
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
57
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
58
- \treturn batch
59
 
60
  test_dataset = test_dataset.map(speech_file_to_array_fn)
61
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
62
 
63
  with torch.no_grad():
64
- \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
65
 
66
  predicted_ids = torch.argmax(logits, dim=-1)
67
 
@@ -72,8 +71,7 @@ print("Reference:", test_dataset["sentence"][:2])
72
 
73
  ## Evaluation
74
 
75
- The model can be evaluated as follows on the greek test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French
76
-
77
 
78
  ```python
79
  import torch
@@ -85,42 +83,42 @@ import re
85
  test_dataset = load_dataset("common_voice", "el", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
86
  wer = load_metric("wer")
87
 
88
- processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
89
- model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
90
  model.to("cuda")
91
 
92
- chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\'\\�]' # TODO: adapt this list to include all special characters you removed from the data
 
93
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
94
 
95
  # Preprocessing the datasets.
96
  # We need to read the aduio files as arrays
97
  def speech_file_to_array_fn(batch):
98
- \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
99
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
100
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
101
- \treturn batch
102
 
103
  test_dataset = test_dataset.map(speech_file_to_array_fn)
104
 
105
  # Preprocessing the datasets.
106
  # We need to read the aduio files as arrays
107
  def evaluate(batch):
108
- \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
109
 
110
- \twith torch.no_grad():
111
- \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
112
 
113
- \tpred_ids = torch.argmax(logits, dim=-1)
114
- \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
115
- \treturn batch
116
 
117
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
118
 
119
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
120
  ```
121
 
122
- **Test Result**: 34.75 % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.
123
-
124
 
125
  ## Training
126
 
@@ -140,6 +138,4 @@ The Common Voice `train`, `validation`, and CSS10 datasets were used for trainin
140
 
141
  As suggested by Florian Zimmermeister.
142
 
143
- The script used for training can be found in [run_common_voice.py](examples/research_projects/wav2vec2/run_common_voice.py), still pending of PR. The only changes are to `speech_file_to_array_fn`. Batch size was kept at 32 (using `gradient_accumulation_steps`) using one of the [OVH](https://www.ovh.com/) machines, with a V100 GPU (thank you very much [OVH](https://www.ovh.com/)). The model trained for 40 epochs, the first 20 with the `train+validation` splits, and then `extra` split was added with the data from CSS10 at the 20th epoch. # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
144
-
145
- =======================To here===============================>
 
 
1
  ---
2
  language: el #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
3
  datasets:
 
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
+ value: 20.89 #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value
28
  ---
29
 
30
+ # Wav2Vec2-Large-XLSR-53-greek
31
 
32
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on greek using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10) datasets.
33
  When using this model, make sure that your speech input is sampled at 16kHz.
34
 
35
  ## Usage
 
42
  from datasets import load_dataset
43
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
44
 
45
+ test_dataset = load_dataset("common_voice", "el", split="test")
46
 
47
+ processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
48
+ model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
49
 
50
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
 
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
+ \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
+ \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
+ \\treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
+ \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
 
71
 
72
  ## Evaluation
73
 
74
+ The model can be evaluated as follows on the greek test data of Common Voice.
 
75
 
76
  ```python
77
  import torch
 
83
  test_dataset = load_dataset("common_voice", "el", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
84
  wer = load_metric("wer")
85
 
86
+ processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
87
+ model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
88
  model.to("cuda")
89
 
90
+ chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\'\\\\�]'
91
+
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
+ \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
99
+ \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
100
+ \\treturn batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
+ \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
+ \\twith torch.no_grad():
110
+ \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
+ \\tpred_ids = torch.argmax(logits, dim=-1)
113
+ \\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
114
+ \\treturn batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
118
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
119
  ```
120
 
121
+ **Test Result**: 20.89 %
 
122
 
123
  ## Training
124
 
 
138
 
139
  As suggested by Florian Zimmermeister.
140
 
141
+ The script used for training can be found in [run_common_voice.py](examples/research_projects/wav2vec2/run_common_voice.py), still pending of PR. The only changes are to `speech_file_to_array_fn`. Batch size was kept at 32 (using `gradient_accumulation_steps`) using one of the [OVH](https://www.ovh.com/) machines, with a V100 GPU (thank you very much [OVH](https://www.ovh.com/)). The model trained for 40 epochs, the first 20 with the `train+validation` splits, and then `extra` split was added with the data from CSS10 at the 20th epoch. # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.