File size: 5,950 Bytes
a6051e6
 
 
 
 
 
 
 
 
 
dc3c50e
 
 
 
 
a6051e6
 
dc3c50e
 
 
 
 
 
 
 
 
 
 
732e354
dc3c50e
 
732e354
dc3c50e
 
 
 
 
 
 
 
 
 
732e354
dc3c50e
 
732e354
dc3c50e
 
 
 
 
 
 
 
 
 
732e354
dc3c50e
 
732e354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6051e6
 
 
 
 
 
 
 
 
aa5ed2c
 
a6051e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5ed2c
a6051e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5ed2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6051e6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
language:
- ca
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
model-index:
- name: wav2vec2-xls-r-300m-ca
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_8_0 ca
      type: mozilla-foundation/common_voice_8_0
      args: ca
    metrics:
       - name: Test WER
         type: wer
         value: 0.1522665117742443
       - name: Test CER
         type: cer
         value: 0.04078709154868726
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: projecte-aina/parlament_parla ca
      type: projecte-aina/parlament_parla
      args: clean
    metrics:
       - name: Test WER
         type: wer
         value: 0.06541946111307212
       - name: Test CER
         type: cer
         value: 0.02205785796827398
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: collectivat/tv3_parla ca
      type: collectivat/tv3_parla
      args: ca
    metrics:
       - name: Test WER
         type: wer
         value: 0.24485121453593564
       - name: Test CER
         type: cer
         value: 0.10753510718204506
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Catalan Dev Data
      type: speech-recognition-community-v2/dev_data
      args: ca
    metrics:
       - name: Test WER
         type: wer
         value: 0.3325532856871798
       - name: Test CER
         type: cer
         value: 0.15916561314791403
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-300m-ca

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2549
- Wer: 0.1573

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 12.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 6.2099        | 0.09  | 500   | 3.4125          | 1.0    |
| 2.9961        | 0.18  | 1000  | 2.9224          | 1.0    |
| 2.2147        | 0.26  | 1500  | 0.6521          | 0.5568 |
| 1.3017        | 0.35  | 2000  | 0.3153          | 0.2761 |
| 1.1196        | 0.44  | 2500  | 0.2444          | 0.2367 |
| 1.0712        | 0.53  | 3000  | 0.2324          | 0.2132 |
| 1.052         | 0.62  | 3500  | 0.2173          | 0.2032 |
| 1.2813        | 2.13  | 4000  | 0.3326          | 0.2099 |
| 1.2365        | 2.4   | 4500  | 0.3224          | 0.2003 |
| 1.2193        | 2.66  | 5000  | 0.3198          | 0.1957 |
| 1.2072        | 2.93  | 5500  | 0.3063          | 0.1933 |
| 1.213         | 3.2   | 6000  | 0.3051          | 0.1980 |
| 1.2074        | 3.46  | 6500  | 0.3012          | 0.1879 |
| 1.1918        | 3.73  | 7000  | 0.2947          | 0.1829 |
| 1.1893        | 4.0   | 7500  | 0.2895          | 0.1807 |
| 1.1751        | 4.26  | 8000  | 0.2878          | 0.1776 |
| 1.1628        | 4.53  | 8500  | 0.2835          | 0.1731 |
| 1.1577        | 4.79  | 9000  | 0.2816          | 0.1761 |
| 1.1448        | 5.06  | 9500  | 0.2757          | 0.1740 |
| 1.1407        | 5.33  | 10000 | 0.2768          | 0.1798 |
| 1.1401        | 5.59  | 10500 | 0.2780          | 0.1816 |
| 1.1333        | 5.86  | 11000 | 0.2748          | 0.1750 |
| 1.1571        | 6.13  | 11500 | 0.2808          | 0.1708 |
| 1.1505        | 6.39  | 12000 | 0.2726          | 0.1692 |
| 1.1519        | 6.66  | 12500 | 0.2749          | 0.1654 |
| 1.136         | 6.93  | 13000 | 0.2765          | 0.1643 |
| 1.1326        | 7.19  | 13500 | 0.2706          | 0.1668 |
| 1.1342        | 7.46  | 14000 | 0.2665          | 0.1638 |
| 1.1286        | 7.72  | 14500 | 0.2669          | 0.1636 |
| 1.1243        | 7.99  | 15000 | 0.2619          | 0.1623 |
| 1.1173        | 8.26  | 15500 | 0.2652          | 0.1604 |
| 1.1129        | 8.52  | 16000 | 0.2610          | 0.1598 |
| 1.1091        | 8.79  | 16500 | 0.2608          | 0.1584 |
| 1.1053        | 9.06  | 17000 | 0.2633          | 0.1664 |
| 1.1004        | 9.32  | 17500 | 0.2594          | 0.1662 |
| 1.0995        | 9.59  | 18000 | 0.2623          | 0.1569 |
| 1.0964        | 9.86  | 18500 | 0.2624          | 0.1597 |
| 1.09          | 10.12 | 19000 | 0.2577          | 0.1578 |
| 1.089         | 10.39 | 19500 | 0.2574          | 0.1531 |
| 1.0864        | 10.66 | 20000 | 0.2556          | 0.1546 |
| 1.0806        | 10.92 | 20500 | 0.2548          | 0.1583 |
| 1.0842        | 11.19 | 21000 | 0.2550          | 0.1542 |
| 1.0805        | 11.45 | 21500 | 0.2561          | 0.1524 |
| 1.0722        | 11.72 | 22000 | 0.2540          | 0.1566 |
| 1.0763        | 11.99 | 22500 | 0.2549          | 0.1572 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.1
- Tokenizers 0.11.0