Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,97 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
tags:
|
8 |
+
- code
|
9 |
---
|
10 |
+
|
11 |
+
# Model Card for Model ID
|
12 |
+
|
13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
14 |
+
|
15 |
+
> This finetuned model is already merged with Mistral7B (Base model)
|
16 |
+
> There will be 2 options running this model for inference
|
17 |
+
> - _Option 1:_ Load base model and use **Peft library** to load parameters of finetuned model on base model
|
18 |
+
> - _Option 2:_ Load finetuned model straight from this huggingface hub
|
19 |
+
|
20 |
+
## Approach 1
|
21 |
+
### Run Inference on Google Colab
|
22 |
+
1. First run this code to load the base model which is Mistral-7B-v0.1
|
23 |
+
```py
|
24 |
+
import torch
|
25 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
26 |
+
|
27 |
+
base_model_id = "mistralai/Mistral-7B-v0.1"
|
28 |
+
bnb_config = BitsAndBytesConfig(
|
29 |
+
load_in_4bit=True,
|
30 |
+
bnb_4bit_use_double_quant=True,
|
31 |
+
bnb_4bit_quant_type="nf4",
|
32 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
33 |
+
)
|
34 |
+
|
35 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
base_model_id, # Mistral, same as before
|
37 |
+
quantization_config=bnb_config, # Same quantization config as before
|
38 |
+
device_map="auto",
|
39 |
+
trust_remote_code=True,
|
40 |
+
use_auth_token=True
|
41 |
+
)
|
42 |
+
|
43 |
+
eval_tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True)
|
44 |
+
|
45 |
+
```
|
46 |
+
2. After that, we would use Peft library to merge the new parameters that we already finetuned with GAML with this code
|
47 |
+
```py
|
48 |
+
from peft import PeftModel
|
49 |
+
import torch
|
50 |
+
# ft_model = PeftModel.from_pretrained(base_model, "mistral-gama-finetune_allblocks_newdata/checkpoint-45")
|
51 |
+
ft_model = PeftModel.from_pretrained(base_model, "Phanh2532/GAML-151-500")
|
52 |
+
#ft_model3 = PeftModel.from_pretrained(base_model, "mistral-allbloclks//checkpoint-250")
|
53 |
+
#ft_model.save_pretrained('/content/mistral-allblocksft/')
|
54 |
+
eval_prompt = "Create a GAML code snippet inspired by water pollution in real life"
|
55 |
+
model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to("cuda")
|
56 |
+
ft_model.eval()
|
57 |
+
with torch.no_grad():
|
58 |
+
print(eval_tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=2000, repetition_penalty=1.15)[0], skip_special_tokens=True))
|
59 |
+
print('----------------------------------------------------------------------')
|
60 |
+
#print(eval_tokenizer.decode(ft_model2.generate(**model_input, max_new_tokens=2000, repetition_penalty=1.15)[0], skip_special_tokens=True))
|
61 |
+
```
|
62 |
+
|
63 |
+
## Approach 2
|
64 |
+
Run this code snippet
|
65 |
+
```py
|
66 |
+
import torch
|
67 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
68 |
+
|
69 |
+
# Load Mistral 7B model and tokenizer
|
70 |
+
model_id = "Phanh2532/GAML-151-500"
|
71 |
+
bnb_config = BitsAndBytesConfig(
|
72 |
+
load_in_4bit=True,
|
73 |
+
bnb_4bit_use_double_quant=True,
|
74 |
+
bnb_4bit_quant_type="nf4",
|
75 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
76 |
+
)
|
77 |
+
|
78 |
+
model = AutoModelForCausalLM.from_pretrained(
|
79 |
+
model_id,
|
80 |
+
quantization_config=bnb_config,
|
81 |
+
device_map="auto",
|
82 |
+
trust_remote_code=True,
|
83 |
+
use_auth_token=True
|
84 |
+
)
|
85 |
+
|
86 |
+
# Load the tokenizer
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, add_bos_token=True, trust_remote_code=True)
|
88 |
+
with torch.no_grad():
|
89 |
+
print(tokenizer.decode(model.generate(**model_input, max_new_tokens=2000, repetition_penalty=1.15)[0], skip_special_tokens=True))
|
90 |
+
print('----------------------------------------------------------------------')
|
91 |
+
# print(eval_tokenizer.decode(ft_model2.generate(**model_input, max_new_tokens=2000, repetition_penalty=1.15)[0], skip_special_tokens=True))
|
92 |
+
```
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- PEFT 0.7.2.dev0
|