--- library_name: transformers base_model: mistralai/Mistral-7B-v0.1 language: - en pipeline_tag: text-generation tags: - code --- # Model Card for Model ID > This finetuned model is already merged with Mistral7B (Base model) > There will be 2 options running this model for inference > - _Option 1:_ Load base model and use **Peft library** to load parameters of finetuned model on base model > - _Option 2:_ Load finetuned model straight from this huggingface hub ## Approach 1 ### Run Inference on Google Colab 1. First run this code to load the base model which is Mistral-7B-v0.1 ```py import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig base_model_id = "mistralai/Mistral-7B-v0.1" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) base_model = AutoModelForCausalLM.from_pretrained( base_model_id, # Mistral, same as before quantization_config=bnb_config, # Same quantization config as before device_map="auto", trust_remote_code=True, use_auth_token=True ) eval_tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True) ``` 2. After that, we would use Peft library to merge the new parameters that we already finetuned with GAML with this code ```py from peft import PeftModel import torch # ft_model = PeftModel.from_pretrained(base_model, "mistral-gama-finetune_allblocks_newdata/checkpoint-45") ft_model = PeftModel.from_pretrained(base_model, "Phanh2532/GAML-151-500") #ft_model3 = PeftModel.from_pretrained(base_model, "mistral-allbloclks//checkpoint-250") #ft_model.save_pretrained('/content/mistral-allblocksft/') eval_prompt = "Create a GAML code snippet inspired by water pollution in real life" model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to("cuda") ft_model.eval() with torch.no_grad(): print(eval_tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=2000, repetition_penalty=1.15)[0], skip_special_tokens=True)) print('----------------------------------------------------------------------') #print(eval_tokenizer.decode(ft_model2.generate(**model_input, max_new_tokens=2000, repetition_penalty=1.15)[0], skip_special_tokens=True)) ``` ## Approach 2 Run this code snippet ```py import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig # Load Mistral 7B model and tokenizer model_id = "Phanh2532/GAML-151-500" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto", trust_remote_code=True, use_auth_token=True ) # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id, add_bos_token=True, trust_remote_code=True) with torch.no_grad(): print(tokenizer.decode(model.generate(**model_input, max_new_tokens=2000, repetition_penalty=1.15)[0], skip_special_tokens=True)) print('----------------------------------------------------------------------') # print(eval_tokenizer.decode(ft_model2.generate(**model_input, max_new_tokens=2000, repetition_penalty=1.15)[0], skip_special_tokens=True)) ``` ### Framework versions - PEFT 0.7.2.dev0