PhilSad commited on
Commit
8e4517f
1 Parent(s): 850cead
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 197.37 +/- 91.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbaa4348dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbaa4348e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbaa4348ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbaa4348f70>", "_build": "<function ActorCriticPolicy._build at 0x7fbaa434c040>", "forward": "<function ActorCriticPolicy.forward at 0x7fbaa434c0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbaa434c160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbaa434c1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbaa434c280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbaa434c310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbaa434c3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbaa434c430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbaa434ac80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678676193314389788, "learning_rate": 0.0001, "tensorboard_log": "./logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8z6O5kj2b0CUhpRSlIwBbJRNIwGMAXSUR0Clyk0PhAGCdX2UKGgGaAloD0MIOUTcnAoWcECUhpRSlGgVTTABaBZHQKXLFSuyNXJ1fZQoaAZoCWgPQwj7IqEtZ0JwQJSGlFKUaBVNzANoFkdApctyKk2xZHV9lChoBmgJaA9DCCLfpdQlFG5AlIaUUpRoFU0nAWgWR0ClzIojv/ipdX2UKGgGaAloD0MIQuvhy8RubkCUhpRSlGgVTVsBaBZHQKXNJJbMX8B1fZQoaAZoCWgPQwjH8xlQ7+5wQJSGlFKUaBVNGgFoFkdApc0v5ckdFXV9lChoBmgJaA9DCBE10eejHmxAlIaUUpRoFU01AWgWR0Cl0I72criEdX2UKGgGaAloD0MIKXXJOMYBbkCUhpRSlGgVTbwBaBZHQKXTCmkWRA91fZQoaAZoCWgPQwga3UHszARnQJSGlFKUaBVNZgFoFkdApdOL2vjfenV9lChoBmgJaA9DCLZHb7iPRW9AlIaUUpRoFU18AmgWR0Cl1E7eMyaedX2UKGgGaAloD0MIbsDnhxHZbkCUhpRSlGgVTSoBaBZHQKXWLTgEU0x1fZQoaAZoCWgPQwgDX9Gt16ZmQJSGlFKUaBVNwQFoFkdApdb1Gb1AaHV9lChoBmgJaA9DCL+ByY2iFmhAlIaUUpRoFU1rAWgWR0Cl1zsvh60IdX2UKGgGaAloD0MIeLRxxNo+bUCUhpRSlGgVTUEBaBZHQKXX0j9GZu11fZQoaAZoCWgPQwgiNe1imqBtQJSGlFKUaBVNIwFoFkdApdgIfdRBNXV9lChoBmgJaA9DCLdfPlmxAm5AlIaUUpRoFU2VAWgWR0Cl2VGBWgezdX2UKGgGaAloD0MIHNMTlni3bUCUhpRSlGgVTToBaBZHQKXZjmcOLBN1fZQoaAZoCWgPQwhpGhTNA8dTQJSGlFKUaBVN6ANoFkdApdtKwpvxY3V9lChoBmgJaA9DCJW2uManRXJAlIaUUpRoFU02AWgWR0Cl3HbuDzy0dX2UKGgGaAloD0MI27+y0qQ1bUCUhpRSlGgVTWYBaBZHQKXp+MiKR+11fZQoaAZoCWgPQwiIghlTsIVrQJSGlFKUaBVNNAFoFkdApeqr1h9b5nV9lChoBmgJaA9DCOxoHOr3b29AlIaUUpRoFU0jAWgWR0Cl6q1nVXmvdX2UKGgGaAloD0MIxsTm41oCbkCUhpRSlGgVTRIBaBZHQKXr2zjWCmN1fZQoaAZoCWgPQwi6vg8HCTdxQJSGlFKUaBVNHgFoFkdApexhle4TbnV9lChoBmgJaA9DCEImGTkLHmlAlIaUUpRoFU1SAWgWR0Cl7HVUEPlNdX2UKGgGaAloD0MII74Ts15BbECUhpRSlGgVTYkBaBZHQKXuCROk+HJ1fZQoaAZoCWgPQwhF8Sprm7BqQJSGlFKUaBVNMQFoFkdApe48My8BdXV9lChoBmgJaA9DCJIgXAGF+FlAlIaUUpRoFU3oA2gWR0Cl761r6+FldX2UKGgGaAloD0MI9E2aBkWrRsCUhpRSlGgVS/doFkdApfELPKMefnV9lChoBmgJaA9DCFNaf0sAem9AlIaUUpRoFU0YAWgWR0Cl8T31jAi3dX2UKGgGaAloD0MIVoLF4UwUY0CUhpRSlGgVTegDaBZHQKXxzojfNzN1fZQoaAZoCWgPQwhxrIvbqHpwQJSGlFKUaBVNFwFoFkdApfPewiaAnXV9lChoBmgJaA9DCI7J4v4jPmFAlIaUUpRoFU3oA2gWR0Cl9FGwJPZadX2UKGgGaAloD0MIesTouQUuY0CUhpRSlGgVTQUCaBZHQKX1WbR4QjF1fZQoaAZoCWgPQwhe1y/YDe1qQJSGlFKUaBVNaAFoFkdApfbS1gH/tXV9lChoBmgJaA9DCOuNWmH6V1ZAlIaUUpRoFU3oA2gWR0Cl+EDfvWpZdX2UKGgGaAloD0MIrthfds/dbUCUhpRSlGgVTWEBaBZHQKX47IatLct1fZQoaAZoCWgPQwjK4v4j009uQJSGlFKUaBVNOQFoFkdApfnm4I8hcXV9lChoBmgJaA9DCG7ajNMQemxAlIaUUpRoFU0rAWgWR0Cl+3ge7tiQdX2UKGgGaAloD0MIur963Dfib0CUhpRSlGgVTTUBaBZHQKX8KpmVZ9x1fZQoaAZoCWgPQwhOucK7XPRqQJSGlFKUaBVNuwNoFkdApf2Tg4wRG3V9lChoBmgJaA9DCHzysFDrx2FAlIaUUpRoFU3oA2gWR0Cl/k85sCT2dX2UKGgGaAloD0MIdENTdvoxbkCUhpRSlGgVTR0BaBZHQKX+jKwpvxZ1fZQoaAZoCWgPQwjOGVHam4huQJSGlFKUaBVNeQFoFkdApf77GDL8rXV9lChoBmgJaA9DCOdvQiECkjfAlIaUUpRoFU0SAWgWR0Cl/xZWq95AdX2UKGgGaAloD0MIrMlTVtPKbECUhpRSlGgVTW8BaBZHQKYASL876pJ1fZQoaAZoCWgPQwg2kgThCl9XQJSGlFKUaBVN6ANoFkdApgBviR4hU3V9lChoBmgJaA9DCHYWvVOBfW1AlIaUUpRoFU0nAWgWR0CmAJKQJXyRdX2UKGgGaAloD0MImlshrMZ6SMCUhpRSlGgVTRQBaBZHQKYA6uTRplB1fZQoaAZoCWgPQwgGED6U6BtvQJSGlFKUaBVNGwFoFkdApgFmy9mHxnV9lChoBmgJaA9DCAvUYvAwp0BAlIaUUpRoFUv1aBZHQKYB+tTUAkt1fZQoaAZoCWgPQwhlw5rKomZuQJSGlFKUaBVNKAFoFkdApgIzjzZpSXV9lChoBmgJaA9DCKiN6nQgGyNAlIaUUpRoFUv2aBZHQKYDHxiG34N1fZQoaAZoCWgPQwgiMxe4fJBwQJSGlFKUaBVNLgFoFkdApgN+TRplBnV9lChoBmgJaA9DCCVdM/lmlm9AlIaUUpRoFU0qAWgWR0CmDxSgPEsKdX2UKGgGaAloD0MIPL8oQf8NbUCUhpRSlGgVTUABaBZHQKYPX0K7ZnN1fZQoaAZoCWgPQwjswg/Op2VpQJSGlFKUaBVNNgFoFkdApg/Q/gR9PXV9lChoBmgJaA9DCN18I7pnbVlAlIaUUpRoFU3oA2gWR0CmEJUT101ZdX2UKGgGaAloD0MIvAfovhxja0CUhpRSlGgVTR4BaBZHQKYQnCzC1qp1fZQoaAZoCWgPQwgZ5gRt8gViQJSGlFKUaBVN6ANoFkdAphGL/lyR0XV9lChoBmgJaA9DCPFneLOG22hAlIaUUpRoFU2EAWgWR0CmE0lm4AjqdX2UKGgGaAloD0MIDHVY4ZZ9bUCUhpRSlGgVTUsBaBZHQKYUHqN6w+t1fZQoaAZoCWgPQwi2oPfGULBwQJSGlFKUaBVNgQFoFkdAphQnDtPYWnV9lChoBmgJaA9DCPLSTWLQNnBAlIaUUpRoFU1CAWgWR0CmFC+dbxEwdX2UKGgGaAloD0MIyCdk521MP0CUhpRSlGgVS8BoFkdAphRSvA44qHV9lChoBmgJaA9DCJmesMSDUHBAlIaUUpRoFU0MAWgWR0CmFHSw4bS7dX2UKGgGaAloD0MIOzjYmxhmW0CUhpRSlGgVTegDaBZHQKYUfVQQ+U11fZQoaAZoCWgPQwjRzJNrCqQRQJSGlFKUaBVL4GgWR0CmFVI3Jgb7dX2UKGgGaAloD0MIhXtl3qqebkCUhpRSlGgVTaIBaBZHQKYVgSPluFZ1fZQoaAZoCWgPQwjsMCb9PTZwQJSGlFKUaBVNVQFoFkdAphWtHnU2DXV9lChoBmgJaA9DCEhOJm4VxBtAlIaUUpRoFUvkaBZHQKYWnoFmnO11fZQoaAZoCWgPQwhSCrq9JGJwQJSGlFKUaBVNGAFoFkdAphcNvKlpGnV9lChoBmgJaA9DCN0kBoFVGHBAlIaUUpRoFU0jAWgWR0CmGCYp+c6OdX2UKGgGaAloD0MIl+MViJ5/cECUhpRSlGgVTQkBaBZHQKYYoS5AhSt1fZQoaAZoCWgPQwiPxMvTua5FwJSGlFKUaBVL+mgWR0CmGocwHqu9dX2UKGgGaAloD0MIAfvo1JWtaUCUhpRSlGgVTSkBaBZHQKYbN3nIQvp1fZQoaAZoCWgPQwitwfuqHLdwQJSGlFKUaBVNHgFoFkdAphuphF3IMnV9lChoBmgJaA9DCGoV/aGZvG9AlIaUUpRoFU0ZAWgWR0CmG7qgRK6GdX2UKGgGaAloD0MIWyOCcXCdbkCUhpRSlGgVTToBaBZHQKYc1lGPPs11fZQoaAZoCWgPQwhuFFlraAJwQJSGlFKUaBVNOgFoFkdAphzczj3mFXV9lChoBmgJaA9DCFTJAFBFbHFAlIaUUpRoFU0lAWgWR0CmHWHW8RL9dX2UKGgGaAloD0MIvXDnwkhHJkCUhpRSlGgVTTgBaBZHQKYdm2WIGhV1fZQoaAZoCWgPQwhj7ISXYMpqQJSGlFKUaBVNOQFoFkdAph3wYk3S8nV9lChoBmgJaA9DCC/APjq1dHBAlIaUUpRoFU0pAWgWR0CmHs4Vh1DCdX2UKGgGaAloD0MI6Nms+lxvcECUhpRSlGgVTRABaBZHQKYfJECvHLl1fZQoaAZoCWgPQwjhmGVPgsxtQJSGlFKUaBVNcgFoFkdAph/XLcKw6nV9lChoBmgJaA9DCJT43Al2/nBAlIaUUpRoFU04AWgWR0CmIEJaiblSdX2UKGgGaAloD0MIndhD+xi7cECUhpRSlGgVTRcBaBZHQKYg5Bdld1N1fZQoaAZoCWgPQwix/WSMj29kQJSGlFKUaBVN6ANoFkdApiDvpnpSrHV9lChoBmgJaA9DCBmqYir9q25AlIaUUpRoFU0cAWgWR0CmIWuHerMldX2UKGgGaAloD0MIyhe0kIDR1z+UhpRSlGgVS+xoFkdApiGKlgtvoHV9lChoBmgJaA9DCJ8fRgiPtiNAlIaUUpRoFUvpaBZHQKYiOONHYpV1fZQoaAZoCWgPQwjpt68D5x5vQJSGlFKUaBVNNQFoFkdApiI+/nGKh3V9lChoBmgJaA9DCB3Lu+oBMWFAlIaUUpRoFU3oA2gWR0CmIknf/FR6dX2UKGgGaAloD0MIoUrNHmi5NUCUhpRSlGgVS/doFkdApiLK1RceKnV9lChoBmgJaA9DCNP02QHX6XJAlIaUUpRoFU1lAWgWR0CmIxK46Oo6dX2UKGgGaAloD0MIUl+WdmrGJ8CUhpRSlGgVTQIBaBZHQKYkHbcoH9p1fZQoaAZoCWgPQwjjxFc7irxtQJSGlFKUaBVNMwFoFkdApiTGCI1tO3V9lChoBmgJaA9DCMUcBB0t/WpAlIaUUpRoFU2qAWgWR0CmJdIRIz3zdX2UKGgGaAloD0MIrOXOTHDgcECUhpRSlGgVTT0BaBZHQKYmMqS5iEx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 400, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2-4.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:302efd0a9f7998b41f4b9fa047dc37438655f4ec61c65e8195d8777224ca04f1
3
+ size 146614
ppo-LunarLander-v2-4/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2-4/data ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbaa4348dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbaa4348e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbaa4348ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbaa4348f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbaa434c040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbaa434c0d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbaa434c160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbaa434c1f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbaa434c280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbaa434c310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbaa434c3a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbaa434c430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fbaa434ac80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 507904,
47
+ "_total_timesteps": 500000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678676193314389788,
52
+ "learning_rate": 0.0001,
53
+ "tensorboard_log": "./logs",
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": null,
59
+ "_last_episode_starts": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
62
+ },
63
+ "_last_original_obs": null,
64
+ "_episode_num": 0,
65
+ "use_sde": false,
66
+ "sde_sample_freq": -1,
67
+ "_current_progress_remaining": -0.015808000000000044,
68
+ "ep_info_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8z6O5kj2b0CUhpRSlIwBbJRNIwGMAXSUR0Clyk0PhAGCdX2UKGgGaAloD0MIOUTcnAoWcECUhpRSlGgVTTABaBZHQKXLFSuyNXJ1fZQoaAZoCWgPQwj7IqEtZ0JwQJSGlFKUaBVNzANoFkdApctyKk2xZHV9lChoBmgJaA9DCCLfpdQlFG5AlIaUUpRoFU0nAWgWR0ClzIojv/ipdX2UKGgGaAloD0MIQuvhy8RubkCUhpRSlGgVTVsBaBZHQKXNJJbMX8B1fZQoaAZoCWgPQwjH8xlQ7+5wQJSGlFKUaBVNGgFoFkdApc0v5ckdFXV9lChoBmgJaA9DCBE10eejHmxAlIaUUpRoFU01AWgWR0Cl0I72criEdX2UKGgGaAloD0MIKXXJOMYBbkCUhpRSlGgVTbwBaBZHQKXTCmkWRA91fZQoaAZoCWgPQwga3UHszARnQJSGlFKUaBVNZgFoFkdApdOL2vjfenV9lChoBmgJaA9DCLZHb7iPRW9AlIaUUpRoFU18AmgWR0Cl1E7eMyaedX2UKGgGaAloD0MIbsDnhxHZbkCUhpRSlGgVTSoBaBZHQKXWLTgEU0x1fZQoaAZoCWgPQwgDX9Gt16ZmQJSGlFKUaBVNwQFoFkdApdb1Gb1AaHV9lChoBmgJaA9DCL+ByY2iFmhAlIaUUpRoFU1rAWgWR0Cl1zsvh60IdX2UKGgGaAloD0MIeLRxxNo+bUCUhpRSlGgVTUEBaBZHQKXX0j9GZu11fZQoaAZoCWgPQwgiNe1imqBtQJSGlFKUaBVNIwFoFkdApdgIfdRBNXV9lChoBmgJaA9DCLdfPlmxAm5AlIaUUpRoFU2VAWgWR0Cl2VGBWgezdX2UKGgGaAloD0MIHNMTlni3bUCUhpRSlGgVTToBaBZHQKXZjmcOLBN1fZQoaAZoCWgPQwhpGhTNA8dTQJSGlFKUaBVN6ANoFkdApdtKwpvxY3V9lChoBmgJaA9DCJW2uManRXJAlIaUUpRoFU02AWgWR0Cl3HbuDzy0dX2UKGgGaAloD0MI27+y0qQ1bUCUhpRSlGgVTWYBaBZHQKXp+MiKR+11fZQoaAZoCWgPQwiIghlTsIVrQJSGlFKUaBVNNAFoFkdApeqr1h9b5nV9lChoBmgJaA9DCOxoHOr3b29AlIaUUpRoFU0jAWgWR0Cl6q1nVXmvdX2UKGgGaAloD0MIxsTm41oCbkCUhpRSlGgVTRIBaBZHQKXr2zjWCmN1fZQoaAZoCWgPQwi6vg8HCTdxQJSGlFKUaBVNHgFoFkdApexhle4TbnV9lChoBmgJaA9DCEImGTkLHmlAlIaUUpRoFU1SAWgWR0Cl7HVUEPlNdX2UKGgGaAloD0MII74Ts15BbECUhpRSlGgVTYkBaBZHQKXuCROk+HJ1fZQoaAZoCWgPQwhF8Sprm7BqQJSGlFKUaBVNMQFoFkdApe48My8BdXV9lChoBmgJaA9DCJIgXAGF+FlAlIaUUpRoFU3oA2gWR0Cl761r6+FldX2UKGgGaAloD0MI9E2aBkWrRsCUhpRSlGgVS/doFkdApfELPKMefnV9lChoBmgJaA9DCFNaf0sAem9AlIaUUpRoFU0YAWgWR0Cl8T31jAi3dX2UKGgGaAloD0MIVoLF4UwUY0CUhpRSlGgVTegDaBZHQKXxzojfNzN1fZQoaAZoCWgPQwhxrIvbqHpwQJSGlFKUaBVNFwFoFkdApfPewiaAnXV9lChoBmgJaA9DCI7J4v4jPmFAlIaUUpRoFU3oA2gWR0Cl9FGwJPZadX2UKGgGaAloD0MIesTouQUuY0CUhpRSlGgVTQUCaBZHQKX1WbR4QjF1fZQoaAZoCWgPQwhe1y/YDe1qQJSGlFKUaBVNaAFoFkdApfbS1gH/tXV9lChoBmgJaA9DCOuNWmH6V1ZAlIaUUpRoFU3oA2gWR0Cl+EDfvWpZdX2UKGgGaAloD0MIrthfds/dbUCUhpRSlGgVTWEBaBZHQKX47IatLct1fZQoaAZoCWgPQwjK4v4j009uQJSGlFKUaBVNOQFoFkdApfnm4I8hcXV9lChoBmgJaA9DCG7ajNMQemxAlIaUUpRoFU0rAWgWR0Cl+3ge7tiQdX2UKGgGaAloD0MIur963Dfib0CUhpRSlGgVTTUBaBZHQKX8KpmVZ9x1fZQoaAZoCWgPQwhOucK7XPRqQJSGlFKUaBVNuwNoFkdApf2Tg4wRG3V9lChoBmgJaA9DCHzysFDrx2FAlIaUUpRoFU3oA2gWR0Cl/k85sCT2dX2UKGgGaAloD0MIdENTdvoxbkCUhpRSlGgVTR0BaBZHQKX+jKwpvxZ1fZQoaAZoCWgPQwjOGVHam4huQJSGlFKUaBVNeQFoFkdApf77GDL8rXV9lChoBmgJaA9DCOdvQiECkjfAlIaUUpRoFU0SAWgWR0Cl/xZWq95AdX2UKGgGaAloD0MIrMlTVtPKbECUhpRSlGgVTW8BaBZHQKYASL876pJ1fZQoaAZoCWgPQwg2kgThCl9XQJSGlFKUaBVN6ANoFkdApgBviR4hU3V9lChoBmgJaA9DCHYWvVOBfW1AlIaUUpRoFU0nAWgWR0CmAJKQJXyRdX2UKGgGaAloD0MImlshrMZ6SMCUhpRSlGgVTRQBaBZHQKYA6uTRplB1fZQoaAZoCWgPQwgGED6U6BtvQJSGlFKUaBVNGwFoFkdApgFmy9mHxnV9lChoBmgJaA9DCAvUYvAwp0BAlIaUUpRoFUv1aBZHQKYB+tTUAkt1fZQoaAZoCWgPQwhlw5rKomZuQJSGlFKUaBVNKAFoFkdApgIzjzZpSXV9lChoBmgJaA9DCKiN6nQgGyNAlIaUUpRoFUv2aBZHQKYDHxiG34N1fZQoaAZoCWgPQwgiMxe4fJBwQJSGlFKUaBVNLgFoFkdApgN+TRplBnV9lChoBmgJaA9DCCVdM/lmlm9AlIaUUpRoFU0qAWgWR0CmDxSgPEsKdX2UKGgGaAloD0MIPL8oQf8NbUCUhpRSlGgVTUABaBZHQKYPX0K7ZnN1fZQoaAZoCWgPQwjswg/Op2VpQJSGlFKUaBVNNgFoFkdApg/Q/gR9PXV9lChoBmgJaA9DCN18I7pnbVlAlIaUUpRoFU3oA2gWR0CmEJUT101ZdX2UKGgGaAloD0MIvAfovhxja0CUhpRSlGgVTR4BaBZHQKYQnCzC1qp1fZQoaAZoCWgPQwgZ5gRt8gViQJSGlFKUaBVN6ANoFkdAphGL/lyR0XV9lChoBmgJaA9DCPFneLOG22hAlIaUUpRoFU2EAWgWR0CmE0lm4AjqdX2UKGgGaAloD0MIDHVY4ZZ9bUCUhpRSlGgVTUsBaBZHQKYUHqN6w+t1fZQoaAZoCWgPQwi2oPfGULBwQJSGlFKUaBVNgQFoFkdAphQnDtPYWnV9lChoBmgJaA9DCPLSTWLQNnBAlIaUUpRoFU1CAWgWR0CmFC+dbxEwdX2UKGgGaAloD0MIyCdk521MP0CUhpRSlGgVS8BoFkdAphRSvA44qHV9lChoBmgJaA9DCJmesMSDUHBAlIaUUpRoFU0MAWgWR0CmFHSw4bS7dX2UKGgGaAloD0MIOzjYmxhmW0CUhpRSlGgVTegDaBZHQKYUfVQQ+U11fZQoaAZoCWgPQwjRzJNrCqQRQJSGlFKUaBVL4GgWR0CmFVI3Jgb7dX2UKGgGaAloD0MIhXtl3qqebkCUhpRSlGgVTaIBaBZHQKYVgSPluFZ1fZQoaAZoCWgPQwjsMCb9PTZwQJSGlFKUaBVNVQFoFkdAphWtHnU2DXV9lChoBmgJaA9DCEhOJm4VxBtAlIaUUpRoFUvkaBZHQKYWnoFmnO11fZQoaAZoCWgPQwhSCrq9JGJwQJSGlFKUaBVNGAFoFkdAphcNvKlpGnV9lChoBmgJaA9DCN0kBoFVGHBAlIaUUpRoFU0jAWgWR0CmGCYp+c6OdX2UKGgGaAloD0MIl+MViJ5/cECUhpRSlGgVTQkBaBZHQKYYoS5AhSt1fZQoaAZoCWgPQwiPxMvTua5FwJSGlFKUaBVL+mgWR0CmGocwHqu9dX2UKGgGaAloD0MIAfvo1JWtaUCUhpRSlGgVTSkBaBZHQKYbN3nIQvp1fZQoaAZoCWgPQwitwfuqHLdwQJSGlFKUaBVNHgFoFkdAphuphF3IMnV9lChoBmgJaA9DCGoV/aGZvG9AlIaUUpRoFU0ZAWgWR0CmG7qgRK6GdX2UKGgGaAloD0MIWyOCcXCdbkCUhpRSlGgVTToBaBZHQKYc1lGPPs11fZQoaAZoCWgPQwhuFFlraAJwQJSGlFKUaBVNOgFoFkdAphzczj3mFXV9lChoBmgJaA9DCFTJAFBFbHFAlIaUUpRoFU0lAWgWR0CmHWHW8RL9dX2UKGgGaAloD0MIvXDnwkhHJkCUhpRSlGgVTTgBaBZHQKYdm2WIGhV1fZQoaAZoCWgPQwhj7ISXYMpqQJSGlFKUaBVNOQFoFkdAph3wYk3S8nV9lChoBmgJaA9DCC/APjq1dHBAlIaUUpRoFU0pAWgWR0CmHs4Vh1DCdX2UKGgGaAloD0MI6Nms+lxvcECUhpRSlGgVTRABaBZHQKYfJECvHLl1fZQoaAZoCWgPQwjhmGVPgsxtQJSGlFKUaBVNcgFoFkdAph/XLcKw6nV9lChoBmgJaA9DCJT43Al2/nBAlIaUUpRoFU04AWgWR0CmIEJaiblSdX2UKGgGaAloD0MIndhD+xi7cECUhpRSlGgVTRcBaBZHQKYg5Bdld1N1fZQoaAZoCWgPQwix/WSMj29kQJSGlFKUaBVN6ANoFkdApiDvpnpSrHV9lChoBmgJaA9DCBmqYir9q25AlIaUUpRoFU0cAWgWR0CmIWuHerMldX2UKGgGaAloD0MIyhe0kIDR1z+UhpRSlGgVS+xoFkdApiGKlgtvoHV9lChoBmgJaA9DCJ8fRgiPtiNAlIaUUpRoFUvpaBZHQKYiOONHYpV1fZQoaAZoCWgPQwjpt68D5x5vQJSGlFKUaBVNNQFoFkdApiI+/nGKh3V9lChoBmgJaA9DCB3Lu+oBMWFAlIaUUpRoFU3oA2gWR0CmIknf/FR6dX2UKGgGaAloD0MIoUrNHmi5NUCUhpRSlGgVS/doFkdApiLK1RceKnV9lChoBmgJaA9DCNP02QHX6XJAlIaUUpRoFU1lAWgWR0CmIxK46Oo6dX2UKGgGaAloD0MIUl+WdmrGJ8CUhpRSlGgVTQIBaBZHQKYkHbcoH9p1fZQoaAZoCWgPQwjjxFc7irxtQJSGlFKUaBVNMwFoFkdApiTGCI1tO3V9lChoBmgJaA9DCMUcBB0t/WpAlIaUUpRoFU2qAWgWR0CmJdIRIz3zdX2UKGgGaAloD0MIrOXOTHDgcECUhpRSlGgVTT0BaBZHQKYmMqS5iEx1ZS4="
71
+ },
72
+ "ep_success_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
75
+ },
76
+ "_n_updates": 400,
77
+ "n_steps": 1024,
78
+ "gamma": 0.99,
79
+ "gae_lambda": 0.95,
80
+ "ent_coef": 0.0,
81
+ "vf_coef": 0.5,
82
+ "max_grad_norm": 0.5,
83
+ "batch_size": 64,
84
+ "n_epochs": 4,
85
+ "clip_range": {
86
+ ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
88
+ },
89
+ "clip_range_vf": null,
90
+ "normalize_advantage": true,
91
+ "target_kl": null
92
+ }
ppo-LunarLander-v2-4/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:974226b6fe608522974dec7c3decc3a5baf06e5a46c55ec11e3eb75c01c9a484
3
+ size 88057
ppo-LunarLander-v2-4/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:799de5084340813af678cf1424eb7e39dd4de7c808bc7047997bb13532a7eb30
3
+ size 43393
ppo-LunarLander-v2-4/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-4/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (254 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 197.368545468262, "std_reward": 91.71732197420519, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T12:39:19.971291"}